A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dysfunction of Caveolae-Mediated Endocytic TβRI Degradation Results in Hypersensitivity of TGF-β/Smad Signaling in Osteogenesis Imperfecta. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Osteogenesis imperfecta (OI) is a genetic disorder caused by mutations of type I collagen-related genes, and excessive transforming growth factor-beta (TGF-β) signaling is a common mechanism. TGF-β/Smad signaling has inhibitory effects on osteoblast differentiation and maturation and is mainly transduced and regulated by the internalization of a tetrameric receptor complex comprising types I and II TGF-β receptors (TβRI and TβRII). During internalization, clathrin-mediated endocytosis enhances TGF-β/Smad signaling via Smad2/3 phosphorylation and receptors recycling, while caveolae-mediated endocytosis turns off TGF-β/Smad signaling by promoting receptor ubiquitination and degradation. In this study, using an animal model of OI (Colla2 , osteogenesis imperfecta murine [oim]/oim mouse), we found that osteoblastic cells of oim/oim mice were more sensitive to the inhibitory effects of TGF-β on osteoblast differentiation and maturation and had much higher cell membrane protein levels of TGF-β receptors than those of wild-type (wt)/wt mice. Further results showed that clathrin-mediated endocytosis of TβRI was enhanced, whereas caveolae-mediated TβRI endocytic degradation was reduced in oim/oim mice, combined with reduced caveolin-1 (Cav-1) phosphorylation. In addition, type I collagen downregulated TβRI via focal adhesion kinase (FAK) and Src activation-dependent Cav-1 phosphorylation. To further examine this mechanism, 4-week-old oim/oim and wt/wt mice were treated with either TβRI kinase inhibitor (SD-208) or vehicle for 8 weeks. SD-208 treatment significantly reduced the fracture incidence in oim/oim mice. Micro-computed tomography and biomechanical testing showed that femoral bone mass and strength were significantly improved with SD-208 treatment in both genotypes. Additionally, SD-208 significantly promoted osteoblast differentiation and bone formation and inhibited bone resorption. In conclusion, dysfunction of caveolae-mediated endocytic TβRI degradation is a possible mechanism for the enhanced TGF-β/Smad signaling in OI. Targeting this mechanism using a TβRI kinase inhibitor effectively reduced fractures and improved bone mass and strength in OI model and, thus, may offer a new strategy for the treatment of OI. © 2022 American Society for Bone and Mineral Research (ASBMR).

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.4734DOI Listing

Publication Analysis

Top Keywords

tgf-β/smad signaling
20
osteogenesis imperfecta
12
osteoblast differentiation
12
oim/oim mice
12
dysfunction caveolae-mediated
8
caveolae-mediated endocytic
8
tβri
8
endocytic tβri
8
tβri degradation
8
inhibitory effects
8

Similar Publications