98%
921
2 minutes
20
Objective: Integration of environmentally sustainable digital health interventions requires robust evaluation of their carbon emission life-cycle before implementation in healthcare. This scoping review surveys the evidence on available environmental assessment frameworks, methods, and tools to evaluate the carbon footprint of digital health interventions for environmentally sustainable healthcare.
Materials And Methods: Medline (Ovid), Embase (Ovid). PsycINFO (Ovid), CINAHL, Web of Science, Scopus (which indexes IEEE Xplore, Springer Lecture Notes in Computer Science and ACM databases), Compendex, and Inspec databases were searched with no time or language constraints. The Systematic Reviews and Meta-analyses Extension for Scoping Reviews (PRISMA_SCR), Joanna Briggs Scoping Review Framework, and template for intervention description and replication (TiDiER) checklist were used to structure and report the findings.
Results: From 3299 studies screened, data was extracted from 13 full-text studies. No standardised methods or validated tools were identified to systematically determine the environmental sustainability of a digital health intervention over its full life-cycle from conception to realisation. Most studies (n = 8) adapted publicly available carbon calculators to estimate telehealth travel-related emissions. Others adapted these tools to examine the environmental impact of electronic health records (n = 2), e-prescriptions and e-referrals (n = 1), and robotic surgery (n = 1). One study explored optimising the information system electricity consumption of telemedicine. No validated systems-based approach to evaluation and validation of digital health interventions could be identified.
Conclusion: There is a need to develop standardised, validated methods and tools for healthcare environments to assist stakeholders to make informed decisions about reduction of carbon emissions from digital health interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667173 | PMC |
http://dx.doi.org/10.1093/jamia/ocac196 | DOI Listing |
BMC Med Inform Decis Mak
September 2025
Emergency Department, Helios Spital, Überlingen, Germany.
Background: The increasing amount of data routinely collected on ICUs poses a challenge for clinicians which is aggravated with data-heavy therapies like Continuous Kidney Replacement Therapy (CKRT). We developed the CKRT Supporting Software Prototype (CKRT-SSP), a clinical decision support system for use before, during and after CKRT. The aim of this user experience (UX) study was to prospectively evaluate CKRT-SSP in terms of usability, user experience, and workload in a simulated ICU setting.
View Article and Find Full Text PDFBMC Rheumatol
September 2025
Department of Environment and Biosciences, School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden.
J Orthop Res
September 2025
Interdisciplinary Orthopedics, Department of Orthopedics Surgery, Aalborg University Hospital, Aalborg, Denmark.
Functional recovery after total knee arthroplasty (TKA) varies widely among individuals, and traditional assessments often fail to detect subtle changes in real-world walking ability. Wearable sensors offer continuous and objective tracking of gait outside of clinical settings. In this prospective, longitudinal study, thirty-one patients undergoing unilateral TKA wore thigh-mounted accelerometers continuously from 2 weeks before surgery through 90 days postoperatively.
View Article and Find Full Text PDFNeurol Sci
September 2025
Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
The rapid evolution of digital tools in recent years after COVID-19 pandemic has transformed diagnostic and therapeutic practice in neurology. This shift has highlighted the urgent need to integrate digital competencies into the training of future specialists. Key innovations such as telemedicine, artificial intelligence, and wearable health technologies have become central to improving healthcare delivery and accessibility.
View Article and Find Full Text PDFJ Imaging Inform Med
September 2025
Department of Diagnostic, Interventional and Pediatric Radiology (DIPR), Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.
Large language models (LLMs) have been successfully used for data extraction from free-text radiology reports. Most current studies were conducted with LLMs accessed via an application programming interface (API). We evaluated the feasibility of using open-source LLMs, deployed on limited local hardware resources for data extraction from free-text mammography reports, using a common data element (CDE)-based structure.
View Article and Find Full Text PDF