A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An approach for quantification of the heterogeneity of DNAPL source zone geometries. | LitMetric

An approach for quantification of the heterogeneity of DNAPL source zone geometries.

J Contam Hydrol

Helmholtz Centre for Environmental Research - UFZ, Department of Monitoring and Exploration Technologies, Permoserstr. 15, 04318 Leipzig, Germany; Center for Applied Geoscience (ZAG), University of Tübingen, Hölderlinstr. 12, 72074 Tübingen, Germany.

Published: December 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many studies have investigated the migration and entrapment processes of source zones from dense non-aqueous phase liquid (DNAPL) contamination under different conditions. However, the characterization of occupying area by source zone (or source shape) in water-saturated aquifers is still rudimentarily considered. In this study, we demonstrated this issue (1) by providing a brief review of existing approaches for source shape consideration, (2) by proposing an approach with simple shape parameters based on the non-uniformity of source widths, and (3) by providing exemplary applications of our proposed approach on shapes already published in previous research works. Our literature review suggested that the source zone in mathematical approaches is generally characterized as simple geometrical shapes (arbitrary lines or rectangles) or system-defined parameters that contrast to complex and discontinuous shapes observed in the real world. But the characterization of such complex shapes is still not possible with acceptable efforts. Therefore, we proposed an approach to parameterize the source shape by considering the variation of width and midpoints over the depth of the entire source zone and formulate four parameters based on population statistics (mean, standard deviation). To illustrate the suitability of our approach, we applied it to the results of lab experiments, and by analyzing these complex shapes, we highlighted the potential for improving the characterization techniques of non-uniformity of the source zones.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2022.104096DOI Listing

Publication Analysis

Top Keywords

source zone
16
source shape
12
source
10
source zones
8
parameters based
8
non-uniformity source
8
proposed approach
8
complex shapes
8
approach
5
shapes
5

Similar Publications