Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heterotypic secondary dengue virus (DENV) infection is a risk factor for the development of severe disease. To assess the contribution of the developing polyclonal humoral immune response to the course of acute infection, we have determined anti-DENV IgG titers, neutralizing antibodies, percentages of antibodies binding to DENV-infected cells and antibody‑dependent enhancement (ADE) to the infecting serotype in DENV-infected Cambodian children (n = 58), ranging from asymptomatic dengue to severe disease. The results showed that ADE titers are highest against the infecting serotype during heterotypic secondary DENV-2 infection. Moreover, IgG titers, neutralizing antibodies and ADE titers against the infecting serotype peak at D10 and are maintained until D60 after laboratory-confirmed secondary DENV infection. Anti-DENV IgG titers and the magnitude of the functional antibody response were higher in secondary DENV-infected patients compared to primary infected patients. No differences in antibody titers, neutralizing or enhancing antibodies could be observed between asymptomatic or hospitalized patients between 6 and 8 days after laboratory-confirmed DENV-1 infection. However, at this time point, the level of IgG bound to DENV-infected cells was associated with disease severity in hospitalized patients. Taken together, our data offer insights for more comprehensive interpretation of antibody response profile to natural infection and its correlation to disease outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596418PMC
http://dx.doi.org/10.1038/s41598-022-21722-2DOI Listing

Publication Analysis

Top Keywords

igg titers
12
titers neutralizing
12
infecting serotype
12
disease outcome
8
heterotypic secondary
8
denv infection
8
severe disease
8
anti-denv igg
8
neutralizing antibodies
8
denv-infected cells
8

Similar Publications

Introduction: Immune-deficient/disordered people (IDP) elicit a less robust immune response to COVID-19 vaccination than the general US population. Despite millions of IDP at presumed elevated risk, few population-level studies of IDP have been conducted in the Omicron era to evaluate breakthrough infection-related outcomes.

Methods: We followed a prospective cohort of 219 IDP and 63 healthy volunteers (HV) in the USA from April 2021 (Alpha variant peak) to July 2023 (Omicron XBB variant peak).

View Article and Find Full Text PDF

Interferon-γ receptor signaling is critical for balanced immune activation and protection against influenza after vaccination.

Virology

September 2025

Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA. Electronic address:

To better understand the contribution of interferon-γ (IFN-γ) receptor signaling to vaccine-induced immunity, we employed A129 (IFN-α/β receptor-deficient) and AG129 (IFN-α/β/γ receptor-deficient) mouse models. AG129 mice induced comparable levels of virus-specific IgG after vaccination with influenza virus H5 hemagglutinin (HA) virus-like particles (VLPs). Vaccinated AG129 mice with HA VLPs exhibited impaired Th1-immune responses, lower hemagglutination inhibition (HAI) titers, increased susceptibility to virus infection, and lower survival rates following influenza virus (H5N1) challenge than vaccinated A129 mice.

View Article and Find Full Text PDF

Background: Myelin oligodendrocyte glycoprotein immunoglobulin G (MOG-IgG) positivity has been reported in some people with multiple sclerosis (pwMS), posing a diagnostic challenge. However, most studies have been conducted in predominantly Caucasian populations. We aimed to determine the frequency of MOG-IgG in a large, predominantly Asian MS cohort using a validated MOG-IgG assay.

View Article and Find Full Text PDF

Development and Evaluation of Dual Microneedle Array Patch for Sequential Intradermal Delivery of Adjuvant and Antigen.

Pharm Res

September 2025

Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University, Seongnam, Gyeonggi-Do, 13120, Republic of Korea.

Purpose: Adjuvants are critical for enhancing immune responses to recombinant protein-based vaccines, which typically exhibit weak immunogenicity. Microneedle array patches (MAPs) offer a promising method for intradermal delivery, but conventional Co-Delivery MAPs (containing antigen and adjuvant together) have limited loading capacity and potential undesirable interactions. Adjuvants may also trigger adverse reactions in sensitive populations.

View Article and Find Full Text PDF

The white spot syndrome virus (WSSV) is a major threat to shrimp farming and causes substantial economic losses in aquaculture. The VP28 envelope protein of WSSV facilitates initial systemic infection in shrimp. Although mammalian-derived antibodies are used for diagnostic tests, high costs and animal welfare concerns necessitate alternative strategies.

View Article and Find Full Text PDF