Modification of G-protein biochemistry and its effect on plant/environment interaction.

Methods Enzymol

Donald Danforth Plant Science Center, St. Louis, MO, United States; Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India.

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heterotrimeric GTP-binding proteins comprised of Gα, Gβ and Gγ subunits are key regulators of a multitude of signaling pathways in eukaryotes. In plants, G-proteins are currently a focus of intense research due to their involvement in modulation of many agronomically important traits such as seed yield, organ size, abscisic acid (ABA)-dependent signaling and stress responses, plant defense responses, symbiosis and nitrogen use efficiency. The mechanistic details of G-protein biochemistry in modulating these processes in plants remain largely unknown. Although the core G-protein components and their activation/deactivation chemistries are broadly conserved throughout eukaryotic evolution, their regulation seems to have been rewired in plants to meet specific needs. Plant G-proteins may be spontaneously active and/or are regulated by phosphorylation-dependent changes, by the activity of lipid second messengers such as phospholipases, or may even have nucleotide-exchange independent regulation. Regardless of these deviations from the established norm, the biochemical properties of plant G-proteins are key to affecting plant phenotypes and responses. Detailed characterization of such activities, in vitro and in planta, will pave the way for precise manipulation of these proteins for future agricultural needs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2022.06.006DOI Listing

Publication Analysis

Top Keywords

g-protein biochemistry
8
plant g-proteins
8
modification g-protein
4
biochemistry plant/environment
4
plant/environment interaction
4
interaction heterotrimeric
4
heterotrimeric gtp-binding
4
gtp-binding proteins
4
proteins comprised
4
comprised gα
4

Similar Publications

Mitochondria continually undergo fission to maintain their network and health. Nascent fission sites are marked by the ER, which facilitates actin polymerization to drive calcium flux into the mitochondrion and constrict the inner mitochondrial membrane. Septins are a major eukaryotic cytoskeleton component that forms filaments that can both directly and indirectly modulate other cytoskeleton components, including actin.

View Article and Find Full Text PDF

Targeted Blockage of Pathological Extracellular Vesicles and Particles From Fibroblast-Like Synoviocytes for Osteoarthritis Relief: Proteomic Analysis and Cellular Effect.

J Extracell Vesicles

September 2025

Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.

Osteoarthritis (OA), the prevalent debilitating joint disorder, is accelerated by dysregulated intercellular crosstalk, yet the role of fibroblast-like synoviocyte (FLS)-derived extracellular vesicles and particles (EVPs) in disease progression remains to be elucidated. Here, integrative analysis of clinical specimens, animal models, and publicly available datasets revealed significant alterations in exosomal pathways within OA synovium. Proteomic profiling revealed distinct molecular signatures in EVPs derived from inflammatory and senescent FLSs, reflecting the pathophysiological status of their parent cells.

View Article and Find Full Text PDF

Enigmatic Roles of Complement Anaphylatoxin Signaling in Health and Disease.

Immune Netw

August 2025

Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA.

Complement anaphylatoxins C3a and C5a are potent immunomodulators whose impact extends well beyond their traditional roles in innate immunity. Acting through G protein-coupled receptors C3aR, C5aR1, and C5aR2, these peptides take part in coordinating immune cell recruitment, vascular tone, and tissue remodeling. Yet their functions are deeply context-dependent: while they play essential roles in microbial clearance and immune coordination, their overactivation contributes to immunopathology in a wide range of diseases.

View Article and Find Full Text PDF

Physiological functions and structural features of Gα12/13 proteins.

Biomed Pharmacother

September 2025

Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany. Electronic address:

Heterotrimeric G proteins are pivotal signal transduction molecules that propagate extracellular signals through G protein-coupled receptors (GPCRs) in the cell. Receptor activation initiates diverse signaling cascades depending on the associated G protein, particularly its Gα subunit, which determines assignment to either the Gαs/olf, Gαi/o, Gαq/11, or Gα12/13 family. The downstream signaling pathways of the families Gαs/olf, Gαi/o, and Gαq/11 have been explored to a greater extent than Gα12/13.

View Article and Find Full Text PDF

Capturing G protein-coupled receptors into native lipid-bilayer nanodiscs using new diisobutylene/maleic acid (DIBMA) copolymers.

Methods

September 2025

Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Universitätsstr. 1, 40225 Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Jülich Ce

Many membrane proteins, including G protein-coupled receptors (GPCRs), are susceptible to denaturation when extracted from their native membrane by detergents. Therefore, alternative methods have been developed, including amphiphilic copolymers that enable the direct extraction of functional membrane proteins along with their surrounding lipids. Among these amphiphilic copolymers, styrene/maleic acid (SMA) and diisobutylene/maleic acid (DIBMA) polymers have been extensively studied.

View Article and Find Full Text PDF