98%
921
2 minutes
20
Cardiac output (CO) and other hemodynamic parameter measurements play an important role in the management of cardiovascular conditions; however, due to limitations of current day technologies, such measurements are either not routinely performed or incorporated into clinical practice. Moreover, measurement of these hemodynamic parameters in the outpatient setting at different time points to assess interval change is currently not feasible. We attempted to validate total-body impedance cardiography-based Non-Invasive Cardiac System (NICaS) derived stroke volume (SV) with that from cardiac magnetic resonance (CMR), a current day gold standard method of assessment. We compared SV, as it is the primary unit of measurement utilized by both technologies. Forty-one consecutive patients undergoing CMR were also investigated by NICaS following CMR. The consistency of non-invasive technology-derived SV measurement was validated by NICaS measurement in 10 subjects, both before and after CMR. Of the 41 enrolled patients; data from 38 patients was adequate for comparison (motion artifact prevented CMR measures in 3 patients). Fourteen patients (37%) were female; mean age was 55 ± 15 years (28-87 years) and body-mass index was 28.7 ± 5.5 kg/m (20.5-41.9 kg/m). Hypertrophic cardiomyopathy (9/41) was the most common study indication for CMR. NICaS-derived SV strongly correlated with CMR [NICaS 77 ± 20 ml (31-123 ml) and CMR 84 ± 23 ml (47-132 ml); P < 0.001; r = 0.77; ICC = 0.73]. The Bland-Altman limits of agreement between NICaS and CMR were -26.7% and 39.9%. NICaS-derived SV collected before and after MRI did not differ [80 ± 18 ml (51-102 ml) pre and 76 ± 17 ml (50-99 ml) post; P = 0.0007, Kappa = 1]. Agreement between NICaS-derived and CMR-derived SV was within the acceptable range of boundaries set by the US Food and the Drug Administration. Consistency in SV measurement at different time-points may allow use of this technology to identify interval hemodynamic changes noninvasively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cpcardiol.2022.101457 | DOI Listing |
Circ Cardiovasc Imaging
September 2025
Department of Cardiology, Amsterdam UMC, The Netherlands. (L.H.G.A.H., N.v.P., M.J.B.K., P.B., C.A., M.J.W.G.).
Eur Heart J Case Rep
September 2025
Feinberg School of Medicine, Northwestern University, 303E Chicago Ave, Ward 1-003, Chicago, IL 60611, USA.
Background: Cardiac laminopathies, associated with mutations in the LMNA gene, are a rare inherited disorder characterized by a broad range of clinical manifestations. There are currently no data on the association between supraventricular re-entrant tachycardias and LMNA-related cardiomyopathy.
Case Summary: A 26-year-old male presented with either wide-QRS tachycardia with a left bundle branch block (LBBB) pattern or narrow QRS tachycardia, as well as a history of palpitations since age 15.
J Chin Med Assoc
September 2025
Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
Background: Cardiac magnetic resonance (CMR) imaging is a critical tool for the diagnosis and evaluation of pulmonary hypertension (PH). This study aimed to investigate the temporal changes in cardiac morphological and functional characteristics in PH using CMR, with the goal of identifying early indicators of adverse clinical outcomes.
Methods: This retrospective study included patients diagnosed with PH using right heart catheterization.
Eur Heart J Cardiovasc Imaging
September 2025
Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
Aims: Fetal circulation undergoes complex changes in congenital heart disease (CHD) that are challenging to assess with fetal echocardiography. This study aimed to assess clinical feasibility and diagnostic value of 4D flow cardiac magnetic resonance (CMR) in fetal CHD.
Methods And Results: Pregnant women in advanced third trimester pregnancy with fetal CHD were prospectively recruited for fetal CMR between 08/2021 and 11/2024.
Int J Cardiovasc Imaging
September 2025
Klinikum Fürth, Friedrich-Alexander-University Erlangen- Nürnberg, Fürth, Germany.
Myocarditis is an inflammation of heart tissue. Cardiovascular magnetic resonance imaging (CMR) has emerged as an important non-invasive imaging tool for diagnosing myocarditis, however, interpretation remains a challenge for novice physicians. Advancements in machine learning (ML) models have further improved diagnostic accuracy, demonstrating good performance.
View Article and Find Full Text PDF