98%
921
2 minutes
20
The application of individual spectroscopic techniques for meat analysis has been widely explored. Attempts to fuse data from multiple spectroscopic instruments for meat analysis are still lacking. Comparative assessment of the performance of mid infrared (MIR), near infrared (NIR) and Raman spectroscopy to estimate fatty acid (FA) composition in processed lamb was investigated. The acquired data from these individual techniques were then utilised in estimating similar parameters using a multi-block partial least square data fusion approach. Model performance was assessed with respect to the determination coefficient and ratio of predictive deviation upon cross-validation of the model. The fused data had slight improvements for the prediction of four FA parameters including MUFA, C18:0, C18:1 c9 and C9, t11- CLA), suggesting possible information enhancement with use of multiple instruments. However, MIR offered better predictability (RPD values) across the FA parameters considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.meatsci.2022.109005 | DOI Listing |
J Phys Chem C Nanomater Interfaces
September 2025
Leiden Insitute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, Netherlands.
In this study, we report the synthesis of single-crystalline h-BN on Ni(111) under ultrahigh vacuum (UHV) conditions using hexamethylborazine (HMB) as a nonclassical precursor. The novel use of HMB facilitates the diffusion of methyl groups into the bulk of Ni(111), playing a critical role in the achievement of high-quality crystalline h-BN layers. The synthesis is performed on a 2 mm-thick Ni(111) single crystal and on a 2-μm-thick Ni(111) thin film on sapphire to evaluate the feasibility of synthesizing h-BN on industrially relevant substrates.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom.
Atomic resolution scanning probe microscopy, and in particular scanning tunnelling microscopy (STM) allows for high-spatial-resolution imaging and also spectroscopic analysis of small organic molecules. However, preparation and characterisation of the probe apex in situ by a human operator is one of the major barriers to high-throughput experimentation and to reproducibility between experiments. Characterisation of the probe apex is usually accomplished via assessment of the imaging quality on the target molecule and also the characteristics of the scanning tunnelling spectra (STS) on clean metal surfaces.
View Article and Find Full Text PDFIEEE Nanotechnol Mater Devices Conf
October 2024
PacTech USA Inc., Santa Clara, CA 95050 USA.
Nanoparticles exhibit optical and infrared sensitivity useful in optoelectronics, spectroscopy, and sensing. Capacitative and conductive coupling induces dipolar and charge transfer plasmon modes in nanoscale dimers. Optical and infrared activity of these hybridized modes are exquisitely sensitive to geometric features of the nanoscale dimer.
View Article and Find Full Text PDFChem Biol Drug Des
September 2025
School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa.
Molecular hybridization of isoniazid with hydrophobic aromatic moieties represents a promising strategy for the development of novel anti-tubercular therapeutics. In this study, a series of hybrid molecules (5a-i) was synthesized by linking isoniazid with aromatic sulfonate esters via a hydrazone bridge. Molecular docking studies revealed that these compounds interact effectively with the catalytic triad of the InhA enzyme (Y158, F149, and K165), suggesting their potential as InhA inhibitors.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
September 2025
From the Department of Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.
Background And Purpose: Low-level light therapy (LLLT) has been shown to modulate recovery in patients with traumatic brain injury (TBI). However, the longitudinal impact of LLLT on brain metabolites has not been studied. The purpose of this study was to use magnetic resonance spectroscopic imaging (MRSI) to assess the metabolic response of LLLT in patients with moderate TBI at acute (within 1 week), subacute (2-3 weeks), and late-subacute (3 months) recovery phases.
View Article and Find Full Text PDF