Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

NSD1, NSD2 and NSD3 proteins constitute a family of histone 3 lysine 36 (H3K36) methyltransferases with similar domain architecture, but diversified activities, in part, dependent on their non-enzymatic domains. These domains, despite their high sequence identity, recruit the hosting proteins to different chromatin regions through the recognition of diverse epigenetic marks and/or associations to distinct interactors. In this sense, the PHDvC5HCH finger tandem domain represents a paradigmatic example of functional divergence within the NSD family. In this work, we prove and give a structural rationale for the uniqueness of the PHDvC5HCH domain of NSD1 in recognizing the C2HR Zinc finger domain of Nizp1 (NSD1 interacting Zn finger protein). Importantly, we show that, in a leukaemogenic context, Nizp1 is pivotal in driving the unscheduled expression of HoxA genes and of genes involved in the type I IFN pathway, triggered by the expression of the fusion protein NUP98-NSD1. These data provide the first insight into the pathophysiological relevance of the Nizp1-NSD1 functional association. Targeting of this interaction might open new therapeutic windows to inhibit the NUP98-NSD1 oncogenic properties.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.16664DOI Listing

Publication Analysis

Top Keywords

nizp1 specific
4
specific nup98-nsd1
4
nup98-nsd1 functional
4
functional interactor
4
interactor regulates
4
regulates nup98-nsd1-dependent
4
nup98-nsd1-dependent oncogenic
4
oncogenic programs
4
programs nsd1
4
nsd1 nsd2
4

Similar Publications

NSD1, NSD2 and NSD3 proteins constitute a family of histone 3 lysine 36 (H3K36) methyltransferases with similar domain architecture, but diversified activities, in part, dependent on their non-enzymatic domains. These domains, despite their high sequence identity, recruit the hosting proteins to different chromatin regions through the recognition of diverse epigenetic marks and/or associations to distinct interactors. In this sense, the PHDvC5HCH finger tandem domain represents a paradigmatic example of functional divergence within the NSD family.

View Article and Find Full Text PDF

small molecules targeting the finger-finger interaction between the histone lysine methyltransferase NSD1 and Nizp1 repressor.

Comput Struct Biotechnol J

December 2020

Biomolecular NMR Group, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Via Olgettina 58, 20132 Milano, Italy.

PHD fingers are small chromatin binding domains, that alone or in tandem work as versatile interaction platforms for diversified activities, ranging from the decoding of the modification status of histone tails to the specific recognition of non-histone proteins. They play a crucial role in their host protein as mutations thereof cause several human malignancies. Thus, PHD fingers are starting to be considered as valuable pharmacological targets.

View Article and Find Full Text PDF

Sotos syndrome is an overgrowth syndrome caused by mutations within the functional domains ofNSD1 gene coding for NSD1, a multidomain protein regulating chromatin structure and gene expression. In particular, PHDVC5HCHNSD1 tandem domain, composed by a classical (PHDV) and an atypical (C5HCH) plant homeo-domain (PHD) finger, is target of several pathological missense-mutations. PHDVC5HCHNSD1 is also crucial for NSD1-dependent transcriptional regulation and interacts with the C2HR domain of transcriptional repressor Nizp1 (C2HRNizp1)in vitro To get molecular insights into the mechanisms dictating the patho-physiological relevance of the PHD finger tandem domain, we solved its solution structure and provided a structural rationale for the effects of seven Sotos syndrome point-mutations.

View Article and Find Full Text PDF

Sotos syndrome is a human developmental and cognitive disorder caused by happloinsufficiency of transcription factor NSD1. Similar phenotypes arise from NSD1 gene deletion or from point mutations in 9 of 13 NSD1 domains, including all 6 PHD domains, indicating that each NSD1 domain performs an essential role. To gain insight into the biochemical basis of Sotos syndrome, we tested the ability of each NSD1 PHD domain to bind histone H3 when methylated at regulatory sites Lys4, Lys9, Lys27, Lys36, and Lys79, and histone H4 at regulatory Lys20, and determined whether Sotos point mutations disrupted methylation site-specific binding.

View Article and Find Full Text PDF