98%
921
2 minutes
20
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in the Omicron lineage has resulted in diminished Coronavirus Disease 2019 (COVID-19) vaccine efficacy and persistent transmission. In this study, we evaluated the immunogenicity and protective efficacy of two, recently authorized, bivalent COVID-19 vaccines that contain two mRNAs encoding Wuhan-1 and either BA.1 (mRNA-1273.214) or BA.4/5 (mRNA-1273.222) spike proteins. As a primary two-dose immunization series in mice, both bivalent vaccines induced greater neutralizing antibody responses against Omicron variants than the parental, monovalent mRNA-1273 vaccine. When administered to mice as a booster at 7 months after the primary vaccination series with mRNA-1273, the bivalent vaccines induced broadly neutralizing antibody responses. Whereas most anti-Omicron receptor binding domain antibodies in serum induced by mRNA-1273, mRNA-1273.214 and mRNA-1273.222 boosters cross-reacted with the antecedent Wuhan-1 spike antigen, the mRNA-1273.214 and mRNA-1273.222 bivalent vaccine boosters also induced unique BA.1-specific and BA.4/5-specific responses, respectively. Although boosting with parental or bivalent mRNA vaccines substantially improved protection against BA.5 compared to mice receiving two vaccine doses, the levels of infection, inflammation and pathology in the lung were lowest in animals administered the bivalent mRNA vaccines. Thus, boosting with bivalent Omicron-based mRNA-1273.214 or mRNA-1273.222 vaccines enhances immunogenicity and confers protection in mice against a currently circulating SARS-CoV-2 strain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752949 | PMC |
http://dx.doi.org/10.1038/s41591-022-02092-8 | DOI Listing |
Mol Ther
September 2025
Sanofi, Waltham, MA, USA.
Since its use during the COVID-19 pandemic, mRNA has emerged as a leading candidate vaccine platform for pandemic infections. A critical difference between RNA-encoded antigen and protein vaccines is that RNA-based vaccines require the antigen to be translated in the body, adding an important variable. Much of the research focus in the field has been on ways to increase expression, but inflammation plays a critical role.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
September 2025
Faculty of Medicine, University of Prishtina, University Clinical Center of Kosovo, Prishtina, Republic of Kosovo.
Objective: The aim of this study was to assess the association between allergic reactions after COVID-19 vaccination and the history of high-risk allergy, individual predisposing factors such as age and gender, and COVID-19 vaccine type.
Materials And Methods: This retrospective cohort study included 234 adult patients (18 years old and above) who underwent a COVID-19 vaccine allergy test up until February 2023 in a Clinic of Allergy and Clinical Immunology in the University Clinical Center of Kosovo. All patients suspected of allergy underwent skin testing: SPT (skin prick test) and IDT (intradermal test) using either an mRNA (ribonucleic messenger acid) vaccine (BNT162b2, Pfizer-BioNTech) and/or an adenoviral vector vaccine (AZD1222, AstraZeneca).
Crit Rev Ther Drug Carrier Syst
September 2025
The emergence of messenger ribonucleic acid (mRNA) vaccines as an alternative platform to traditional vaccines has been accompanied by advances in nanobiotechnology, which have improved the stability and delivery of these vaccines through novel nanoparticles (NPs). Specifically, the development of NPs for mRNA delivery has facilitated the loading, protection and release of mRNA in the biological microenvironment, leading to the stimulation of mRNA translation for effective intervention strategies. Intriguingly, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), have been permitted for emergency usage authorization to prevent COVID-19 infection by USFDA.
View Article and Find Full Text PDFJ Oncol Pharm Pract
September 2025
Department of Research & Development, Squad Medicine and Research (SMR), Amadalavalasa, Andhra Pradesh, India.
Cancer vaccines represent a transformative shift in oncology, aiming to prevent malignancies or treat established cancers by training the immune system to recognize tumor-specific or tumor-associated antigens. This review explores the diverse platforms and mechanisms supporting cancer vaccines, ranging from prophylactic vaccines such as HPV and hepatitis B vaccines that have significantly reduced virus-related cancers to therapeutic vaccines like Sipuleucel-T and T-VEC that extend survival in prostate cancer and melanoma. Vaccine types are classified, and delivery platforms including mRNA, peptide, dendritic cell and viral vector-based approaches are examined alongside pivotal clinical trial outcomes.
View Article and Find Full Text PDFBiosaf Health
August 2025
National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea.
Despite the development of messenger ribonucleic acid (mRNA) vaccines for the infectious novel coronavirus 2 (SARS-CoV-2), further research on test methods is required to ensure their quality as well as rapid and effective approval for release to the market. During the current national lot release testing, identity tests cannot be conducted on other products using primers, probes, and in-house reference materials provided by the manufacturer and specific to one vaccine, because their sequences do not match. When key reagents and reference materials are dependent on the manufacturer in this way, difficulties in national lot release approval-which serves as an additional step for the government to verify product quality-arise if the manufacturer does not provide them.
View Article and Find Full Text PDF