98%
921
2 minutes
20
It is widely known how acid rain negatively impacts plant physiology. However, the magnitude of these effects may depend on soil types. Although the response of aboveground parts has received much attention, the effects of soil types and acid rain on underground processes are yet to be studied, specifically with respect to the composition and diversity of bacterial communities in the rhizosphere. Based on a high throughput sequencing approach, this study examined how different soil types, acid rain of different pH, and interactions between the two factors influenced the growth and rhizosphere bacterial communities of Jatropha curcas L. The present study pointed out that the soil pH, total nitrogen (TN), total phosphorus (TP), total potassium (TK), and total organic carbon/total nitrogen (C/N) were more related to soil type than to acid rain. The growth of J. curcas aboveground was mainly affected by acid rain, while the underground growth was mainly influenced by soil type. Changes in bacterial abundance indicated that the genera (Burkholderia-Paraburkholde, Bryobacter, Cupriavidus, Mycobacterium, and Leptospirillu) and phyla (Acidobacteria and Actinobacteria) could likely resist acid rain to some extent, with Acidobacteria, Gemmatimonadetes and Proteobacteria being well adapted to the copiotrophic environments. Results of correlational analyses between Firmicutes and soil properties (pH, TN, TK) further indicated that this phylum was also well adapted to a nutrient-deficient habitat of low pH. Finally, while Mycobacterium and Bradyrhizobium could adapt to low pH, high soil TK contents were not conducive to their enrichment. The results also showed that acid rain shifted the bacterial groups from fast-growing copiotrophic populations to slow-growing oligotrophic ones. The RDA analysis, and Pearson's rank correlation coefficients indicated that soil pH and TK were the main factors influencing bacterial richness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.116493 | DOI Listing |
Elevated acidity from natural and anthropogenic sources can be a significant stressor for plants, affecting essential processes such as nutrient uptake and growth. While low pH (< 4) is generally considered stressful for plants, differential impacts of distinct acid types-organic versus inorganic, strong versus weak-on plant growth and development remain unclear. To address this knowledge gap, we evaluated the responses of two Brassicaceae species to organic (acetic) and inorganic (hydrochloric, sulfuric) acids at three pH levels (pH 2.
View Article and Find Full Text PDFAdv Sci (Weinh)
August 2025
Bioinspired Soft Robotics Laboratory, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy.
Environmental and distributed monitoring of remote, inaccessible, or polluted areas requires low-maintenance and sustainable solutions. Passive dispersal strategies with (bio)degradable fliers, inspired by plant anemochory, offer an eco-friendly approach to deploy distributed sensors with minimal human intervention. In this work, a degradable flier, inspired by Tipuana tipu samaras, is presented, integrating 3D printed porous cellulose nanocrystal aerogel (CNCa) sensors onto poly(vinyl alcohol) (PVA) wings.
View Article and Find Full Text PDFMethodsX
June 2025
Department of Mathematics, Birla Institute of Technology and Science, Pilani, India.
Air pollution poses a significant challenge to public health and the global environment. The Industrial Revolution, advancing technology and society, led to elevated air pollution levels, contributing to acid rain, smog, ozone depletion, and global warming. Poor air quality increases risks of respiratory inflammation, tuberculosis, asthma, chronic obstructive pulmonary disease (COPD), pneumoconiosis, and lung cancer.
View Article and Find Full Text PDFMaterials (Basel)
July 2025
Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy.
The development of slow-release fertilizers (SRFs) based on production residues is a promising strategy to improve nutrient use efficiency and promote circular economy practices in agriculture. In this study, a series of experimental formulations were designed and tested using pumice scraps, liquid and dried blood, and bone meal, aiming at producing sustainable and low-cost N-P-K SRFs. These were processed through mixing and granulation, both in the laboratory and on a semi-industrial scale.
View Article and Find Full Text PDFISME Commun
January 2025
Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Digital polymerase chain reaction (dPCR) is a DNA quantification technology that offers absolute quantification of DNA templates. In this study, we optimized and validated a chip-based dPCR EvaGreen assay with commonly used 16S rRNA gene primer pairs and compared its performance to quantitative real-time PCR (qPCR). We compared measurements of low amounts of template DNA using a newly designed synthetic DNA standard to assess precision, accuracy, and sensitivity.
View Article and Find Full Text PDF