Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In mammals, the liver is involved in nutrient metabolism and in the regulation of lipid and glucose homeostasis. Multiple studies have described improvements in liver disorders after regular consumption of grape seed extract (GSE). GSE prevents or ameliorates hepatic metabolic dysfunction through AMPK activation, which reduces hepatic lipogenesis while enhancing hepatic lipid oxidation. However, the involvement of ChREBPβ and PPARβ/δ in these effects has not been fully elucidated. We aim to demonstrate that chronic consumption of GSE at low doses (25 mg kg body weight per day) produces beneficial effects on hepatic glucose and lipid metabolism in young lean Wistar rats and that part of these effects involve ChREBPβ inactivation and PPARβ/δ activation. In our study, increased concentrations of structurally related (-)-()catechin metabolites and 5-carbon ring fission metabolites were found in the serum of GSE-supplemented rats parallel with the reduction in triglycerides and leptin levels, hepatic cholesterol content and visceral adiposity. GSE supplementation inactivates ChREBP and GSK-3β, which has been linked to improvements in hepatic lipid and glucose metabolism. Furthermore, the consumption of GSE promotes the expression of /, as well as and , which control hepatic lipid oxidation. Interestingly, pharmacological inhibition of PPARβ/δ slowed the induction of and , as well as the activation of AMPK triggered by GSE consumption. Our data suggest that PPARβ/δ activation is involved in the metabolic reprogramming effects of chronic GSE consumption in young rats, by modulating, at least, part of the transcriptional programs that maintain hepatic and systemic fuel homeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2fo02199dDOI Listing

Publication Analysis

Top Keywords

hepatic lipid
16
hepatic
9
grape seed
8
seed extract
8
lipid metabolism
8
lipid glucose
8
lipid oxidation
8
consumption gse
8
pparβ/δ activation
8
gse consumption
8

Similar Publications

Connecting the Dots: Hepatic Steatosis as a Central Player in the Choreography of the Liver-Cardiovascular-Kidney-Metabolic Syndrome.

Heart Lung Circ

September 2025

Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, WA, Australia; Medical School, The University of Western Australia, Perth, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia. Electronic address:

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide, with a reach extending beyond the liver to include other metabolic syndrome-related disorders. Cardiovascular disease and type 2 diabetes mellitus are recognised non-communicable disorders and often downstream complications of MASLD and share similar risk factors. However, MASLD has not been afforded parity alongside other cardiometabolic non-communicable disorders, including the cardiovascular-kidney-metabolic (CKM) syndrome.

View Article and Find Full Text PDF

MAFLD: a ferroptotic disease.

Trends Mol Med

September 2025

Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:

Ferroptosis, a regulated cell death pathway driven by iron-catalyzed lipid peroxidation, has recently been implicated as a major cause of hepatic injury in metabolic dysfunction-associated fatty liver disease (MAFLD). This review highlights how the identification of hyperoxidized peroxiredoxin 3 (PRDX3) as a ferroptosis-specific marker has led to the discovery that ferroptosis contributes to liver injury in MAFLD, and summarizes other emerging evidence connecting ferroptosis to MAFLD pathogenesis. These new findings suggest that dietary fat composition and genetic variants such as PNPLA3(I148M) may affect the progression of MAFLD by regulating cellular sensitivity to ferroptosis.

View Article and Find Full Text PDF

This study evaluated the effects of dietary recovered frying soybean oil (RFSBO) and selenium nanoparticles (SeNPs) on growth performance, hepatic metabolism, intestinal morphology, and the expression of antioxidant, immune, and growth-related genes in juvenile Asian sea bass (Lates calcarifer, 41.5 ± 0.1 g) reared under high temperature (32-33 °C) and high salinity (38-40 ppt).

View Article and Find Full Text PDF

Heart DHA turnover is faster in female compared to male ALA- and EPA-fed mice.

J Lipid Res

September 2025

Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8. Electronic address:

Young females have higher circulating docosahexaenoic acid (DHA) levels than males, though the metabolic basis remains incompletely understood. Building on previous findings demonstrating higher hepatic synthesis of the DHA precursor, docosapentaenoic acid (DPAn-3) in males, this study extends the investigation to n-3 PUFA turnover in extrahepatic tissues of male and female C57BL/6N mice using compound-specific isotope analysis (CSIA). Animals were fed a 12-week diet enriched in either α-linolenic acid (ALA), eicosapentaenoic acid (EPA), or DHA, starting with a 4-week phase containing low carbon-13 (δC)-n-3 PUFA, followed by an 8-week phase with high δC-n-3 PUFA (n = 4 per diet, time point, sex).

View Article and Find Full Text PDF

Neonatal Liver-Derived FTH1-Enriched Extracellular Vesicles Attenuate Ferroptosis and Ameliorate MASLD Pathogenesis.

Free Radic Biol Med

September 2025

Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China. Electronic address:

Metabolic dysfunction-associated steatotic liver disease (MASLD), a leading cause of chronic liver pathology, lacks effective therapies. This study identifies ferroptosis-a lipid peroxidation-driven, iron-dependent form of cell death-as a central pathogenic mechanism in MASLD. Integrative proteomic and histopathological analyses of human and murine MASLD livers revealed marked ferroptosis activation, characterized by dysregulated iron metabolism (reduced FTH1 and GPX4; elevated ACSL4) and oxidative stress.

View Article and Find Full Text PDF