Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
High-order harmonic generation (HHG) from the interaction of ultra-intense laser pulses with atoms is an important tabletop short-wave coherent light source. Accurate quantum simulations of it present large computational difficulties due to multi-electron multidimensional effects. In this paper, the time-dependent response of hydrogen atoms is calculated using a time-series prediction scheme, the HHG spectrum is reconstructed very accurately. The accuracy of the forecasting is further improved by using a neural network scheme. This scheme is also applied to the simulation of the harmonic emission on multi-electron systems, and the applicability of the scheme is confirmed by the harmonic calculation of complex systems. This method is expected to simulate the nonlinear dynamic process of multi-electron atoms and molecules irradiated by intense laser pulses quickly and accurately.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.470495 | DOI Listing |