Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The membrane protein TMEM150C has been proposed to form a mechanosensitive ion channel that is required for normal proprioceptor function. Here, we examined whether expression of TMEM150C in neuroblastoma cells lacking Piezo1 is associated with the appearance of mechanosensitive currents. Using three different modes of mechanical stimuli, indentation, membrane stretch, and substrate deflection, we could not evoke mechanosensitive currents in cells expressing TMEM150C. We next asked if TMEM150C is necessary for the normal mechanosensitivity of cutaneous sensory neurons. We used an available mouse model in which the Tmem150c locus was disrupted through the insertion of a LacZ cassette with a splice acceptor that should lead to transcript truncation. Analysis of these mice indicated that ablation of the Tmem150c gene was not complete in sensory neurons of the dorsal root ganglia (DRG). Using a CRISPR/Cas9 strategy, we made a second mouse model in which a large part of the Tmem150c gene was deleted and established that these Tmem150c-/- mice completely lack TMEM150C protein in the DRGs. We used an ex vivo skin nerve preparation to characterize the mechanosenstivity of mechanoreceptors and nociceptors in the glabrous skin of the Tmem150c-/- mice. We found no quantitative alterations in the physiological properties of any type of cutaneous sensory fiber in Tmem150c-/- mice. Since it has been claimed that TMEM150C is required for normal proprioceptor function, we made a quantitative analysis of locomotion in Tmem150c-/- mice. Here again, we found no indication that there was altered gait in Tmem150c-/- mice compared to wild-type controls. In summary, we conclude that existing mouse models that have been used to investigate TMEM150C function in vivo are problematic. Furthermore, we could find no evidence that TMEM150C forms a mechanosensitive channel or that it is necessary for the normal mechanosensitivity of cutaneous sensory neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9582506PMC
http://dx.doi.org/10.1085/jgp.202213098DOI Listing

Publication Analysis

Top Keywords

tmem150c-/- mice
20
tmem150c
12
cutaneous sensory
12
sensory neurons
12
required normal
8
normal proprioceptor
8
proprioceptor function
8
mechanosensitive currents
8
normal mechanosensitivity
8
mechanosensitivity cutaneous
8

Similar Publications

Tentonin 3 is a pore-forming subunit of a slow inactivation mechanosensitive channel.

Cell Rep

June 2024

Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea. Electronic address:

Mechanically activating (MA) channels transduce numerous physiological functions. Tentonin 3/TMEM150C (TTN3) confers MA currents with slow inactivation kinetics in somato- and barosensory neurons. However, questions were raised about its role as a Piezo1 regulator and its potential as a channel pore.

View Article and Find Full Text PDF

The membrane protein TMEM150C has been proposed to form a mechanosensitive ion channel that is required for normal proprioceptor function. Here, we examined whether expression of TMEM150C in neuroblastoma cells lacking Piezo1 is associated with the appearance of mechanosensitive currents. Using three different modes of mechanical stimuli, indentation, membrane stretch, and substrate deflection, we could not evoke mechanosensitive currents in cells expressing TMEM150C.

View Article and Find Full Text PDF

Tentonin 3/TMEM150C regulates glucose-stimulated insulin secretion in pancreatic β-cells.

Cell Rep

November 2021

Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea; Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea. Electronic address:

Glucose homeostasis is initially regulated by the pancreatic hormone insulin. Glucose-stimulated insulin secretion in β-cells is composed of two cellular mechanisms: a high glucose concentration not only depolarizes the membrane potential of the β-cells by ATP-sensitive K channels but also induces cell inflation, which is sufficient to release insulin granules. However, the molecular identity of the stretch-activated cation channel responsible for the latter pathway remains unknown.

View Article and Find Full Text PDF

A variety of mechanosensory neurons are involved in touch, proprioception, and pain. Many molecular components of the mechanotransduction machinery subserving these sensory modalities remain to be discovered. Here, we combine recordings of mechanosensitive (MS) currents in mechanosensory neurons with single-cell RNA sequencing.

View Article and Find Full Text PDF

The baroreceptor reflex is a powerful neural feedback that regulates arterial pressure (AP). Mechanosensitive channels transduce pulsatile AP to electrical signals in baroreceptors. Here we show that tentonin 3 (TTN3/TMEM150C), a cation channel activated by mechanical strokes, is essential for detecting AP changes in the aortic arch.

View Article and Find Full Text PDF