Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Image dehazing aims to remove haze in images to improve their image quality. However, most image dehazing methods heavily depend on strict prior knowledge and paired training strategy, which would hinder generalization and performance when dealing with unseen scenes. In this paper, to address the above problem, we propose Bidirectional Normalizing Flow (BiN-Flow), which exploits no prior knowledge and constructs a neural network through weakly-paired training with better generalization for image dehazing. Specifically, BiN-Flow designs 1) Feature Frequency Decoupling (FFD) for mining the various texture details through multi-scale residual blocks and 2) Bidirectional Propagation Flow (BPF) for exploiting the one-to-many relationships between hazy and haze-free images using a sequence of invertible Flow. In addition, BiN-Flow constructs a reference mechanism (RM) that uses a small number of paired hazy and haze-free images and a large number of haze-free reference images for weakly-paired training. Essentially, the mutual relationships between hazy and haze-free images could be effectively learned to further improve the generalization and performance for image dehazing. We conduct extensive experiments on five commonly-used datasets to validate the BiN-Flow. The experimental results that BiN-Flow outperforms all state-of-the-art competitors demonstrate the capability and generalization of our BiN-Flow. Besides, our BiN-Flow could produce diverse dehazing images for the same image by considering restoration diversity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2022.3214093 | DOI Listing |