A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Stacking ensemble learning model to predict 6-month mortality in ischemic stroke patients. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Patients with acute ischemic stroke can benefit from reperfusion therapy. Nevertheless, there are gray areas where initiation of reperfusion therapy is neither supported nor contraindicated by the current practice guidelines. In these situations, a prediction model for mortality can be beneficial in decision-making. This study aimed to develop a mortality prediction model for acute ischemic stroke patients not receiving reperfusion therapies using a stacking ensemble learning model. The model used an artificial neural network as an ensemble classifier. Seven base classifiers were K-nearest neighbors, support vector machine, extreme gradient boosting, random forest, naive Bayes, artificial neural network, and logistic regression algorithms. From the clinical data in the International Stroke Trial database, we selected a concise set of variables assessable at the presentation. The primary study outcome was all-cause mortality at 6 months. Our stacking ensemble model predicted 6-month mortality with acceptable performance in ischemic stroke patients not receiving reperfusion therapy. The area under the curve of receiver-operating characteristics, accuracy, sensitivity, and specificity of the stacking ensemble classifier on a put-aside validation set were 0.783 (95% confidence interval 0.758-0.808), 71.6% (69.3-74.2), 72.3% (69.2-76.4%), and 70.9% (68.9-74.3%), respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576722PMC
http://dx.doi.org/10.1038/s41598-022-22323-9DOI Listing

Publication Analysis

Top Keywords

stacking ensemble
16
ischemic stroke
16
stroke patients
12
reperfusion therapy
12
ensemble learning
8
learning model
8
6-month mortality
8
acute ischemic
8
prediction model
8
patients receiving
8

Similar Publications