A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

NXPH4 Used as a New Prognostic and Immunotherapeutic Marker for Muscle-Invasive Bladder Cancer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: One of the most common malignant tumors of the urinary system is muscle-invasive bladder cancer (MIBC). With the increased use of immunotherapy, its importance in the field of cancer is becoming abundantly evident. This study classifies MIBC according to GSVA score from the perspective of the GSEA immune gene set.

Methods: This study integrated the sequencing and clinical data of MIBC patients in TCGA and GEO databases, then scored the data using the GSVA algorithm, the CNMF algorithm was implemented to divide the subtypes of GEO and TCGA datasets, respectively, and finally screened and determined the key pathways in combination with clinical data. Simultaneously, LASSO Cox regression model was constructed based on key pathway genes to assess the model's predictive ability (ROC) and describe the immune landscape differences between high- and low-risk groups; key genes were further analyzed and verified in patient tissues.

Results: 404 TCGA and 297 GEO datasets were divided into C1-3 groups (TCGA-C1:120/C2:152/C3:132; GEO- C1:112/C2:101/C3:84), of which TCGA-C2 ( = 152) subtype and GEO-C1 ( = 112) subtype had the worst prognosis. LASSO Cox regression model with ROC (train set = 0.718, test set = 0.667) could be constructed. When combined with the Cancer Immunome Atlas database, it was found that patients with high-risk scores were more sensitive to PD-1 inhibitor and PD-1 inhibitor combined with CTLA-4. NXPH4, as a key gene, plays a role in MIBC with tissue validation results show that nxph4 is highly expressed in tumor.

Conclusion: The immune gene score of MIBC data in TCGA and GEO databases was successfully evaluated using GSVA in this research. The lasso Cox expression model was successfully constructed by screening immune genes, the high-risk group had a worse prognosis and higher sensitivity to immunotherapy, PD-1 inhibitors or PD-1 combined with CTLA-4 inhibitors can be preferentially used in high-risk patients who are sensitive to immunotherapy, and NXPH4 may be a molecular target to adjust the effect of immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553512PMC
http://dx.doi.org/10.1155/2022/4271409DOI Listing

Publication Analysis

Top Keywords

lasso cox
12
muscle-invasive bladder
8
bladder cancer
8
immune gene
8
clinical data
8
tcga geo
8
geo databases
8
cox regression
8
regression model
8
model constructed
8

Similar Publications