A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

3D microengineered vascularized tumor spheroids for drug delivery and efficacy testing. | LitMetric

3D microengineered vascularized tumor spheroids for drug delivery and efficacy testing.

Acta Biomater

Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Republic of Korea; Division of WCU (World Class University) Multiscale Mechanical Design, Seoul National University, Seoul 08826, Republic of Korea; Seoul National University Institute of Advanced Machines an

Published: July 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tumor angiogenesis is regarded as a promising target for limiting cancer progression because tumor-associated vasculature supplies blood and provides a path for metastasis. Thus, in vitro recapitulation of vascularized tumors is critical to understand the pathology of cancer and identify the mechanisms by which tumor cells proliferate, metastasize, and respond to drugs. In this study, we microengineered a vascularized tumor spheroid (VTS) model to reproduce the pathological features of solid tumors. We first generated tumor-EC hybrid spheroids with self-assembled intratumoral vessels, which enhanced the uniformity of the spheroids and peritumoral angiogenic capacity compared to spheroids composed only with cancer cells. Notably, the hybrid spheroids also exhibited expression profiles associated with aggressive behavior. The blood vessels sprouting around the hybrid spheroids on the VTS chip displayed the distinctive characteristics of leaky tumor vessels. With the VTS chip showing a progressive tumor phenotype, we validated the suppressive effects of axitinib on tumor growth and angiogenesis, which depended on exposure dose and time, highlighting the significance of tumor vascularization to predict the efficacy of anticancer drugs. Ultimately, we effectively induced both lymphangiogenesis and angiogenesis around the tumor spheroid by promoting interstitial flow. Thus, our VTS model is a valuable platform with which to investigate the interactions between tumor microenvironments and explore therapeutic strategies in cancer. STATEMENT OF SIGNIFICANCE: We conducted an integrative study within a vascularized tumor spheroid (VTS) model. We first generated tumor-EC hybrid spheroids with self-assembled intratumoral vessels, which enhanced the uniformity of the spheroids and peritumoral angiogenic capacity compared to spheroids composed only with cancer cells. Through RNA sequencing, we elucidated that the tumor-EC hybrid spheroids exhibited expression profiles associated with aggressive behavior such as cancer progression, invasion and metastasis. The blood vessels sprouting around the hybrid spheroids on the VTS chip displayed the distinctive characteristics of leaky tumor vessels. We further validated the suppressive effects of axitinib on tumor growth and angiogenesis, depending on exposure dose and time. Ultimately, we effectively induced both lymphangiogenesis and angiogenesis around the tumor spheroid by promoting interstitial flow.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.10.009DOI Listing

Publication Analysis

Top Keywords

hybrid spheroids
24
tumor spheroid
16
tumor
14
vascularized tumor
12
vts model
12
tumor-ec hybrid
12
vts chip
12
spheroids
11
microengineered vascularized
8
cancer progression
8

Similar Publications