Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We propose and demonstrate a non-mode-locking approach to generating multi-gigahertz repetition rate, femtosecond pulses in burst mode by shaping a continuous-wave (CW) seed laser in an all-fiber configuration. The seed laser at 1030 nm is first phase modulated and de-chirped to low-contrast, ∼2 ps pulses at a 17.5 GHz repetition rate, then carved to bursts at a 60 kHz repetition rate, and finally shaped to <2 ps clean pulses by a Mamyshev regenerator. This prepared high-quality picosecond source is further used to seed an Yb-doped fiber amplifier operating in the highly nonlinear regime, delivering output pulses at 23 nJ/pulse and $20\,\mathrm{\mu}$J/burst, compressible to ∼100 fs level. The system eliminates the need for mode-locked cavities and simplifies conventional ultrafast electro-optic combs to using only one phase modulator, while providing femtosecond pulses at multiple gigahertz repetition rate, enhanced pulse energy in burst mode and the potential of further power/energy scaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.473167 | DOI Listing |