Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human respiratory infections caused by coronaviruses can range from mild to deadly. Although there are numerous studies on coronavirus disease 2019 (COVID-19), few have been published on its Omicron variant. In order to remedy this deficiency, this study undertook a bibliometric analysis of the publishing patterns of studies on the Omicron variant and identified hotspots. Automated transportation, environmental protection, improved healthcare, innovation in banking, and smart homes are just a few areas where machine learning has found use in tackling complicated problems. The sophisticated Scopus database was queried for papers with the term "Omicron" in the title published between January 2020 and June 2022. Microsoft Excel 365, VOSviewer, Bibliometrix, and Biblioshiny from R were used for a statistical analysis of the publications. Over the study period, 1917 relevant publications were found in the Scopus database. Viruses was the most popular in publications for Omicron variant research, with 150 papers published, while Cell was the most cited source. The bibliometric analysis determined the most productive nations, with USA leading the list with the highest number of publications (344) and the highest level of international collaboration on the Omicron variant. This study highlights scientific advances and scholarly collaboration trends and serves as a model for demonstrating global trends in Omicron variant research. It can aid policymakers and medical researchers to fully grasp the current status of research on the Omicron variant. It also provides normative data on the Omicron variant for visualization, study, and application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9566376PMC
http://dx.doi.org/10.3390/ijerph191912407DOI Listing

Publication Analysis

Top Keywords

omicron variant
32
bibliometric analysis
12
scopus database
12
analysis publications
8
omicron
8
publications omicron
8
variant
8
publications
5
variant 2020
4
2020 2022
4

Similar Publications

Background: Between November 2023 and March 2024, coastal Kenya experienced another wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections detected through our continued genomic surveillance. Herein, we report the clinical and genomic epidemiology of SARS-CoV-2 infections from 179 individuals (a total of 185 positive samples) residing in the Kilifi Health and Demographic Surveillance System (KHDSS) area (~ 900 km).

Methods: We analyzed genetic, clinical, and epidemiological data from SARS-CoV-2 positive cases across pediatric inpatient, health facility outpatient, and homestead community surveillance platforms.

View Article and Find Full Text PDF

Serine protease inhibitors (SERPINs) are involved in various physiological processes and diseases, such as inflammation, cancer metastasis, and neurodegeneration. Their role in viral infections is poorly understood, as their expression patterns during infection and the range of proteases they target have yet to be fully characterized. Here, we show widespread expression of human SERPINs in response to respiratory virus infections, both in bronchioalveolar lavages from COVID-19 patients and in polarized human airway epithelial cultures.

View Article and Find Full Text PDF

Background: Obesity was a risk factor for severe COVID-19 in children during early outbreaks of ancestral SARS-CoV-2 and the Delta variant. However, the relationship between obesity and COVID-19 severity during the Omicron wave remains unclear.

Methods: This multicenter, observational study included polymerase chain r eaction-confirmed SARS-CoV-2-infected children and adolescents from Australia, Brazil, Italy, Portugal, Switzerland, Thailand, the United Kingdom and the United States hospitalized between January 1, 2020, and March 31, 2022.

View Article and Find Full Text PDF

Background: The SARS-CoV-2 virus has evolved subvariants since the emergence of the omicron variant in 2021. Whether these changes impact viral shedding and transmissibility is not known.

Methods: POSITIVES is a prospective longitudinal cohort of individuals with mild SARS-CoV-2 infection.

View Article and Find Full Text PDF

The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.

View Article and Find Full Text PDF