98%
921
2 minutes
20
Azobispyrazole, 4pzMe-5pzH, derivatives with small terminal substituents (Me, Et, -Pr, and -Pr) are reported to undergo facile reversible photoswitching in condensed phases at room temperature, exhibiting unprecedentedly large effective light penetration depths (1400 μm of UV at 365 nm and 1400 μm of visible light at 530 nm). These small photoswitches exhibit crystal-to-liquid phase transitions upon UV irradiation, which increases the overall energy storage density of this material beyond 300 J/g that is similar to the specific energy of commercial Na-ion batteries. The impact of heteroarene design, the presence of methyl substituents, and the terminal functional groups is explored for both condensed-phase switching and energy storage. The design principles elucidated in this work will help to develop a wide variety of molecular solar thermal energy storage materials that operate in condensed phases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9619401 | PMC |
http://dx.doi.org/10.1021/jacs.2c07537 | DOI Listing |
Environ Monit Assess
September 2025
Department of Environment and Life Science, KSKV Kachchh University, Bhuj, Gujarat, 370 001, India.
India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
Ether-based electrolytes are widely acknowledged for their potential to form stable solid electrolyte interfaces (SEIs) for stable anode performance. However, conventional ether-based electrolytes have shown a tendency for cation-solvent co-intercalation phenomena on graphite electrodes, resulting in lower capacity and higher voltage platforms compared to those of neat cation insertion in ester-based electrolytes. In response, we propose the development of weakly solvating ether solvents to weaken the interaction between cations and solvents, thereby suppressing co-intercalation behavior.
View Article and Find Full Text PDFSci Rep
September 2025
Fukushima Renewable Energy Institute, Koriyama, Japan.
Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.
View Article and Find Full Text PDFBioresour Technol
September 2025
State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technol
Carbon dioxide enhanced oil recovery (CO-EOR) is widely used for carbon capture, utilization, and storage in Chinese oilfields, but part of injected CO returns with produced oil, reducing carbon-reduction efficiency. Bioconverting this CO to methane energy by methanogens benefits the technology, yet on-site high-efficiency conversion meeting natural-gas grid standards remains challenging. This study used a newly-designed triple-tank bioreactor to investigate CO-to-methane conversion and methanogenic kinetics of Methanococcus maripaludis.
View Article and Find Full Text PDFAdv Colloid Interface Sci
September 2025
Moscow Center for Advanced Studies, 20, Kulakova str., Moscow, 123592, Moscow region, Russia. Electronic address:
Room temperature ionic liquids show great promise as electrolytes in various technological applications, such as energy storage or electrotunable lubrication. These applications are particularly intriguing due to the specific behavior of ionic liquids in nanoconfinement. While previous research has been focused on optimizing the required characteristics through the selection of electrolyte properties, the contribution of confining material properties in these systems has been largely overlooked.
View Article and Find Full Text PDF