Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Glycogen is important for transmission of V. vulnificus undergoing disparate environments of nutrient-rich host and nutrient-limited marine environment. The malZ gene of V. vulnificus encoding a maltodextrin glucosidase was cloned and over-expressed in E. coli to investigate its roles in glycogen/maltodextrin metabolism in the pathogen. The malZ gene encoded a protein with a predicted molecular mass of 70 kDa. The optimal pH and temperature of MalZ was 7.0 and 37 °C, respectively. MalZ hydrolyzed maltodextrin to glucose and maltose most efficiently, while hydrolyzed other substrates such as starch, maltose, β-cyclomaltodextrin, and glycogen less efficiently. The activity was enhanced greatly by Mn. It also exhibited transglycosylation activity toward excessive maltotriose. The malZ knock-out mutant accumulated 2.3-5.6-fold less glycogen than the wild type when excessive maltodextrin or glucose was added to LB medium, while it accumulated more glycogen than the wild type (3.5-fold) in the presence of excessive maltose. Growth and glycogen accumulation of the mutant were retarded most significantly in the M63 minimal medium supplemented with 0.5% maltodextrin. Side chain length distributions of glycogen molecules were varied by the malZ mutation and types of the excessive carbon source. Based on the results, MalZ of V. vulnificus was likely to be involved in maltose/maltodextrin metabolism, thereby balancing synthesis of glycogen and energy generation in the cell. The bacterium seemed to have multiple and unique pathways for glycogen metabolism according to carbon sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-022-03274-1 | DOI Listing |