A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Exploration of Variables Predicting Sense of School Belonging Using the Machine Learning Method-Group Mnet. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The purpose of this study was to explore variables related to school belonging from a holistic perspective, including a large number of variables in one model, different to the traditional analytical method. Using 2015 data from the Program for International Student Assessment (PISA), we sought to identify variables related to school belonging by searching for hundreds of predictors in one model using the group Mnet machine learning technique. The study repeated 100 rounds of model building after random data splitting. After exploring 504 variables (384 student and 99 parent), 32 variables were finally selected after selection counts. Variables predicting a sense of school belonging were categorized as individual/parent variables (e.g. motivation to achieve, tendency to cooperative learning, parental support) and school-related variables (e.g. school satisfaction, peer/teacher relationship, learning/physical activities). The significance and implications of the study as well as future research topics were discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1177/00332941221133005DOI Listing

Publication Analysis

Top Keywords

school belonging
16
variables school
12
variables predicting
8
predicting sense
8
sense school
8
machine learning
8
variables
8
school
5
exploration variables
4
belonging
4

Similar Publications