A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Unleashing high content screening in hit detection - Benchmarking AI workflows including novelty detection. | LitMetric

Unleashing high content screening in hit detection - Benchmarking AI workflows including novelty detection.

Comput Struct Biotechnol J

Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.

Published: September 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Complex mixtures containing natural products are still an interesting source of novel drug candidates. High content screening (HCS) is a popular tool to screen for such. In particular, multiplexed HCS assays promise comprehensive bioactivity profiles, but generate also high amounts of data. Yet, only some machine learning (ML) applications for data analysis are available and these usually require a profound knowledge of the underlying cell biology. Unfortunately, there are no applications that simply predict if samples are biologically active or not (any kind of bioactivity). Within this work, we benchmark ML algorithms for binary classification, starting with classical ML models, which are the standard classifiers of the scikit-learn library or ensemble models of these classifiers (a total of 92 models tested). Followed by a partial least square regression (PLSR)-based classification (44 tested models in total) and simple artificial neural networks (ANNs) with dense layers (72 tested models in total). In addition, a novelty detection (ND) was examined, which is supposed to handle unknown patterns. For the final analysis the models, with and without upstream ND, were tested with two independent data sets. In our analysis, a stacking model, an ensamble model of class ML algorithms, performed best to predict new and unknown data. ND improved the predictions of the models and was useful to handle unknown patterns. Importantly, the classifier presented here can be easily rebuilt and be adapted to the data and demands of other groups. The hit detector (ND + stacking model) is universal and suitable for a broader application to support the search for new drug candidates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9530837PMC
http://dx.doi.org/10.1016/j.csbj.2022.09.023DOI Listing

Publication Analysis

Top Keywords

high content
8
content screening
8
novelty detection
8
drug candidates
8
tested models
8
models total
8
handle unknown
8
unknown patterns
8
models
7
data
5

Similar Publications