98%
921
2 minutes
20
Many hearing-impaired patients may significantly benefit from the Hybrid or electro-acoustic stimulation (EAS) cochlear implant (CI). However, as much as 30-55% of CI recipients lose residual hearing after implantation and the potential for associated benefits of EAS over traditional electric-only stimulation. The cause of this post-implantation hearing loss may be immediate or delayed and result from several factors, including surgical trauma, electric stimulation, and the foreign body response. Clinical and post-mortem studies have helped identify factors effecting EAS performance. Animal CI models are an essential translational tool to further investigate these pertinent issues through histopathological investigation with greater control of biological and stimulation variables as well as other unique research tools not available in clinical and post-mortem research. Additionally, animal CI models may provide useful preclinical data for potential therapeutic strategies aimed at improving EAS outcomes. Here we review the parameters required for rigorous study of mechanisms of post-implantation hearing loss, including selection of animal model, hearing loss model, age and sex considerations, surgical technique, and chronic electrical stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2022.108624 | DOI Listing |
Behind arthritis and heart disease, hearing loss (HL) is the third most prevalent chronic condition in older Americans, with primary care providers playing a crucial role in its identification. Understanding the practices and perceptions of primary care providers in hearing health is key to understanding gaps in hearing health care for patients. We conducted a quality improvement study at an urban tertiary academic facility from January–June 2024.
View Article and Find Full Text PDFIntroduction: Some medical conditions may be associated with increased risks of collision and poor performance while driving. Traffic crashes could result in fatalities and injuries. The Australian national medical guidelines do not provide specific instructions for all medical conditions.
View Article and Find Full Text PDFCereb Cortex
August 2025
Department of Psychology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany.
The human auditory system must distinguish relevant sounds from noise. Severe hearing loss can be treated with cochlear implants (CIs), but how the brain adapts to electrical hearing remains unclear. This study examined adaptation to unilateral CI use in the first and seventh months after CI activation using speech comprehension measures and electroencephalography recordings, both during passive listening and an active spatial listening task.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Cytogenetics and Molecular Genetics Lab, Pathology Unit, Medical Division (BARC Hospital), Bhabha Atomic Research Centre, Anushakti Nagar, Mumbai, India.
Background: Hearing loss (HL) is one of the most common congenital anomalies and is a complex etiologically diverse condition. Molecular genetic characterization of HL remains challenging owing to the high genetic heterogeneity. This study aimed to screen for potential disease-causing genetic variations in a cohort of Indian patients with congenital bilateral severe-to-profound sensorineural HL.
View Article and Find Full Text PDF