A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Domain generalization in deep learning based mass detection in mammography: A large-scale multi-center study. | LitMetric

Domain generalization in deep learning based mass detection in mammography: A large-scale multi-center study.

Artif Intell Med

Artificial Intelligence in Medicine Lab (BCN-AIM), Faculty of Mathematics and Computer Science, University of Barcelona, Gran Via de les Corts Catalanes 585, Barcelona, 08007, Barcelona, Spain.

Published: October 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Computer-aided detection systems based on deep learning have shown great potential in breast cancer detection. However, the lack of domain generalization of artificial neural networks is an important obstacle to their deployment in changing clinical environments. In this study, we explored the domain generalization of deep learning methods for mass detection in digital mammography and analyzed in-depth the sources of domain shift in a large-scale multi-center setting. To this end, we compared the performance of eight state-of-the-art detection methods, including Transformer based models, trained in a single domain and tested in five unseen domains. Moreover, a single-source mass detection training pipeline was designed to improve the domain generalization without requiring images from the new domain. The results show that our workflow generalized better than state-of-the-art transfer learning based approaches in four out of five domains while reducing the domain shift caused by the different acquisition protocols and scanner manufacturers. Subsequently, an extensive analysis was performed to identify the covariate shifts with the greatest effects on detection performance, such as those due to differences in patient age, breast density, mass size, and mass malignancy. Ultimately, this comprehensive study provides key insights and best practices for future research on domain generalization in deep learning based breast cancer detection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2022.102386DOI Listing

Publication Analysis

Top Keywords

domain generalization
20
deep learning
16
generalization deep
12
learning based
12
mass detection
12
domain
9
detection
8
large-scale multi-center
8
breast cancer
8
cancer detection
8

Similar Publications