Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective: Cardiovascular disease (CVD) is a major healthcare challenge and therefore early risk assessment is vital. Previous assessment techniques use either "conventional CVD risk calculators (CCVRC)" or machine learning (ML) paradigms. These techniques are ad-hoc, unreliable, not fully automated, and have variabilities. We, therefore, introduce AtheroEdge-MCDL (AE3.0) windows-based platform using multiclass Deep Learning (DL) system.
Methods: Data was collected on 500 patients having both carotid ultrasound and corresponding coronary angiography scores (CAS), measured as stenosis in coronary arteries and considered as the gold standard. A total of 39 covariates were used, clubbed into three clusters, namely (i) Office-based: age, gender, body mass index, smoker, hypertension, systolic blood pressure, and diastolic blood pressure; (ii) Laboratory-based: Hyperlipidemia, hemoglobin A1c, and estimated glomerular filtration rate; and (iii) Carotid ultrasound image phenotypes: maximum plaque height, total plaque area, and intra-plaque neovascularization. Baseline characteristics for four classes (target labels) having significant (p < 0.0001) values were calculated using Chi-square and ANOVA. For handling the cohort's imbalance in the risk classes, AE3.0 used the synthetic minority over-sampling technique (SMOTE). AE3.0 used Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) DL models and the performance (accuracy and area-under-the-curve) was computed using 10-fold cross-validation (90% training, 10% testing) frameworks. AE3.0 was validated and benchmarked.
Results: The AE3.0 using RNN and LSTM showed an accuracy and AUC (p < 0.0001) pairs as (95.00% and 0.98), and (95.34% and 0.99), respectively, and showed an improvement of 32.93% and 9.94% against CCVRC and ML, respectively. AE3.0 runs in <1 s.
Conclusion: DL algorithms are a powerful paradigm for coronary artery disease (CAD) risk prediction and CVD risk stratification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2022.106018 | DOI Listing |