A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

DNA sensor-associated type I interferon signaling is increased in ulcerative colitis and induces JAK-dependent inflammatory cell death in colonic organoids. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

DNA sensor pathways can initiate inflammasome, cell death, and type I interferon (IFN) signaling in immune-mediated inflammatory diseases (IMIDs), including type I interferonopathies. We investigated the involvement of these pathways in the pathogenesis of ulcerative colitis (UC) by analyzing the expression of DNA sensor, inflammasome, and type I IFN biomarker genes in colonic mucosal biopsy tissue from control ( = 31), inactive UC ( = 31), active UC ( = 33), and a UC single-cell RNA-Seq dataset. The effects of type I IFN (IFN-β), IFN-γ, and TNF-α on gene expression, cytokine production, and cell death were investigated in human colonic organoids. In organoids treated with cytokines alone, or in combination with NLR family pyrin domain-containing 3 (NLRP3), caspase, or JAK inhibitors, cell death was measured, and supernatants were assayed for IL-1β/IL-18/CXCL10. The expression of DNA sensor pathway genes-PYHIN family members [absent in melanoma 2 (), , myeloid cell nuclear differentiation antigen (), and pyrin and HIN domain family member 1 ()- as well as Z-DNA-binding protein 1 (), cyclic GMP-AMP synthase (), and was increased in active UC and expressed in a cell type-restricted pattern. Inflammasome genes (, , and ), type I IFN inducers [stimulator of interferon response cGAMP interactor 1 (), , and ), , and type I IFN biomarker genes (, , and ) were also increased in active UC. Cotreatment of organoids with IFN-β or IFN-γ in combination with TNFα increased expression of , , , , and induced cell death and IL-1β/IL-18 secretion. This inflammatory cell death was blocked by the JAK inhibitor tofacitinib but not by inflammasome or caspase inhibitors. Increased type I IFN activity may drive elevated expression of DNA sensor genes and JAK-dependent but inflammasome-independent inflammatory cell death of colonic epithelial cells in UC. This study found that patients with active UC have significantly increased colonic gene expression of cytosolic DNA sensor, inflammasome, STING, and type I IFN signaling pathways. The type I IFN, IFN-β, in combination with TNF-α induced JAK-dependent but NLRP3 and inflammasome-independent inflammatory cell death of colonic organoids. This novel inflammatory cell death phenotype is relevant to UC immunopathology and may partially explain the efficacy of the JAKinibs tofacitinib and upadacitinib in patients with UC.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.00104.2022DOI Listing

Publication Analysis

Top Keywords

cell death
36
type ifn
28
inflammatory cell
20
dna sensor
20
death colonic
12
colonic organoids
12
expression dna
12
cell
11
type
10
death
9

Similar Publications