98%
921
2 minutes
20
(1,3;1,4)-β-Glucan is a non-cellulosic polysaccharide required for correct barley grain fill and plant development, with industrial relevance in the brewing and the functional food sector. Barley grains contain higher levels of (1,3;1,4)-β-glucan compared to other small grain cereals and this influences their end use, having undesirable effects on brewing and distilling and beneficial effects linked to human health. is the main gene contributing to (1,3;1,4)-β-glucan biosynthesis in the grain. Here, the transcriptional regulation of was investigated using an analysis of transcription factor binding sites (TFBS) in its putative promoter, and functional characterization in a barley protoplast transient expression system. Based on TFBS predictions, TF classes AP2/ERF, MYB, and basic helix-loop-helix (bHLH) were over-represented within a 1,000 bp proximal promoter region. Dual luciferase assays based on multiple deletion constructs revealed the promoter fragment driving expression. Highest promoter activity was narrowed down to a 51 bp region located -331 bp to -382 bp upstream of the start codon. We combined this with TFBS predictions to identify two MYB TFs: and as putative activators of expression. Gene network analyses assigned to the same co-expression module as and other primary cellulose synthases (, , and ), whereas was assigned to a different module. Based on RNA-seq expression during grain development, was cloned and tested in the protoplast system. The transient over-expression of in barley protoplasts suggested a positive regulatory effect on expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9493323 | PMC |
http://dx.doi.org/10.3389/fpls.2022.883139 | DOI Listing |
Carbohydr Polym
November 2025
Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. Electronic address:
This study investigates the phenomenon that, in contrast to amylopectin-rich starch granules, high amylose starch (HAS) granules typically exhibit high hydrolytic resistance manifested as low density of enzyme attack sites on the starch granule surface. However, among the various types of examined HAS granules, we identified differences in enzymatic resistance. We associated this effect as a result of variations in specific rate of the enzymatic reaction, with intermediate affinity leading to the highest enzymatic efficacy characteristic for the Sabatier principle.
View Article and Find Full Text PDFFood Sci Technol Int
September 2025
Graphic Era Deemed to be University, Dehradun, Uttarakhand, India.
Barley is an underutilized crop with considerable potential for enhancing food security and sustainability. Hull-less barley is a nutrient-dense cereal grain rich in β-glucan and dietary fiber; however, its broader application in food systems is constrained by the presence of antinutritional factors and certain functional limitations that affect processing and bioavailability. This study investigated the effects of acid (1% HCl) and alkali (1% NaOH) treatments on two hull-less barley varieties (PL 891 and BHS 352), with emphasis on nutritional composition, antinutrient reduction, functional behavior, thermal transitions, and microstructural attributes.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Crop Protection Division, Indian Council of Agricultural Research (ICAR)- Indian Institute of Wheat and Barley Research, Karnal, Haryana, India.
The rice weevil ( L.) is one of the most destructive pests of stored cereal grains, particularly wheat, leading to considerable post-harvest losses and posing serious threats to global food security and international trade. Rapid and accurate identification of infestations is essential for implementing timely pest management strategies and adhering to phytosanitary regulations.
View Article and Find Full Text PDFMolecules
August 2025
College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China.
In embedding systems, protein-polysaccharide complexes can be utilized as wall materials to improve the bioavailability and activity of bioactive substances during delivery. This study used the antisolvent precipitation method to manufacture gliadin from highland barley distillers' grains (HBDGG)-chitosan (Cs) nanoparticles. Using a variety of characterization techniques, the microstructure and interaction mechanism of HBDGG-Cs nanoparticles were examined, and their stability was assessed.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Commonwealth Scientific and Industrial Research Organisation (CSIRO), Acton, ACT, Australia.
Frost and heat events at critical growth stages could cause large yield losses. These temperature extremes are increasing in frequency and intensity due to climate change in many parts of the broadacre cropping regions globally, presenting challenges to food production. For cool-season grain-growing regions, where summers are already too hot, heat and frost risks can limit adaptation options.
View Article and Find Full Text PDF