A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Swelling, collapse and ordering of rod-like microgels in solution: Computer simulation studies. | LitMetric

Swelling, collapse and ordering of rod-like microgels in solution: Computer simulation studies.

J Colloid Interface Sci

Physics Department, Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russian Federation; National Research South Ural State University, Chelyabinsk 454080, Russian Federation. Electronic address:

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polymer microgels have proven to be highly promising macromolecular objects for a wide variety of applications. In particular, the soft particles of an anisotropic (rod-like) shape are of special interest because of their potential use in tissue engineering or materials design. However, a little is known about the physical behavior of such microgels in solution, which inspired us to study them using mesoscopic computer simulations. For single networks, depending on the solvent quality, the dimensional characteristics were obtained for microgels of different molecular weight, crosslinking density and aspect ratio. In particular, the conditions for the rod-to-rod (preserving the nonspherical shape) and rod-to-sphere collapse were found. In addition, the effect of the liquid-crystalline (LC) ordering was demonstrated for the ensemble of rod-like microgels at different swelling ratios, and the influence of microgel aspect ratio on the volume fraction of the LC transition was shown.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.09.050DOI Listing

Publication Analysis

Top Keywords

rod-like microgels
8
microgels solution
8
aspect ratio
8
microgels
5
swelling collapse
4
collapse ordering
4
ordering rod-like
4
solution computer
4
computer simulation
4
simulation studies
4

Similar Publications