Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Polymer microgels have proven to be highly promising macromolecular objects for a wide variety of applications. In particular, the soft particles of an anisotropic (rod-like) shape are of special interest because of their potential use in tissue engineering or materials design. However, a little is known about the physical behavior of such microgels in solution, which inspired us to study them using mesoscopic computer simulations. For single networks, depending on the solvent quality, the dimensional characteristics were obtained for microgels of different molecular weight, crosslinking density and aspect ratio. In particular, the conditions for the rod-to-rod (preserving the nonspherical shape) and rod-to-sphere collapse were found. In addition, the effect of the liquid-crystalline (LC) ordering was demonstrated for the ensemble of rod-like microgels at different swelling ratios, and the influence of microgel aspect ratio on the volume fraction of the LC transition was shown.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.09.050 | DOI Listing |