Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Beginning in May 2022, a novel cluster of monkeypox virus infections was detected in humans. This virus has spread rapidly to non-endemic countries, sparking global concern. Specific vaccines based on the vaccinia virus (VACV) have demonstrated high efficacy against monkeypox viruses in the past and are considered an important outbreak control measure. Viruses observed in the current outbreak carry distinct genetic variations that have the potential to affect vaccine-induced immune recognition. Here, by investigating genetic variation with respect to orthologous immunogenic vaccinia-virus proteins, we report data that anticipates immune responses induced by VACV-based vaccines, including the currently available MVA-BN and ACAM2000 vaccines, to remain highly cross-reactive against the newly observed monkeypox viruses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9506226 | PMC |
http://dx.doi.org/10.3390/v14091960 | DOI Listing |