98%
921
2 minutes
20
Near-infrared spectroscopy (NIRS) measurements of tissue oxygen saturation (StO) are frequently used during vascular and cardiac surgeries as a non-invasive means of assessing brain health; however, signal contamination from extracerebral tissues remains a concern. As an alternative, hyperspectral (hs)NIRS can be used to measure changes in the oxidation state of cytochrome c oxidase (ΔoxCCO), which provides greater sensitivity to the brain given its higher mitochondrial concentration versus the scalp. The purpose of this study was to evaluate the depth sensitivity of the oxCCO signal to changes occurring in the brain and extracerebral tissue components. The oxCCO assessment was conducted using multi-distance hsNIRS (source-detector separations = 1 and 3 cm), and metabolic changes were compared to changes in StO. Ten participants were monitored using an in-house system combining hsNIRS and diffuse correlation spectroscopy (DCS). Data were acquired during carotid compression (CC) to reduce blood flow and hypercapnia to increase flow. Reducing blood flow by CC resulted in a significant decrease in oxCCO measured at = 3 cm but not at 1 cm. In contrast, significant changes in StO were found at both distances. Hypercapnia caused significant increases in StO and oxCCO at = 3 cm, but not at 1 cm. Extracerebral contamination resulted in elevated StO but not oxCCO after hypercapnia, which was significantly reduced by applying regression analysis. This study demonstrated that oxCCO was less sensitive to extracerebral signals than StO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9502461 | PMC |
http://dx.doi.org/10.3390/metabo12090817 | DOI Listing |
Glob Chang Biol
September 2025
Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.
View Article and Find Full Text PDFFront Nutr
August 2025
Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
Background: Voghera pepper (VP) extracts were demonstrated to have anti-oxidant ability in several cell types.
Purpose: This study aimed to assess whether VP-extracts could lower oxidative stress and modulate thyroid cancer (TC) cells behavior .
Methods: Extracts were analyzed using the LC-DAD-MS system.
J Inflamm Res
September 2025
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
Introduction: While nucleus pulposus cell (NPC) degeneration is a primary driver of intervertebral disc degeneration (IVDD), the cellular heterogeneity and molecular interactions underlying NPC degeneration remain poorly characterized. Previous studies have shown that EGFR signaling plays a significant role in NPC differentiation and collagen matrix production. Consequently, this study aims to identify the critical downstream regulatory molecule of EGFR in the process of NPC degeneration.
View Article and Find Full Text PDFChem Sci
September 2025
College of Chemistry and Materials Engineering, Wenzhou University Wenzhou Zhejiang 325035 P. R. China
Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) owing to abundant resources and cost-effectiveness. However, cathode materials face persistent challenges in structural stability, ion kinetics, and cycle life. This review highlights the transformative potential of high-entropy (HE) strategies that leveraging multi-principal element synergies to address these limitations entropy-driven mechanisms.
View Article and Find Full Text PDFJ Appl Toxicol
September 2025
Chair for DNA Research, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Metal oxide nanoparticles are employed in various applications such as medicine, environmental remediation, molecular sensing, and drug delivery. However, large-scale commercial production and the use of smaller-sized nanoparticles increase the potential risk of toxicity to humans. Therefore, there is an urgent need to investigate the toxicity of nanomaterials.
View Article and Find Full Text PDF