Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The flavoprotein kynurenine 3-monooxygenase (KMO) is localised to the outer mitochondrial membrane and catalyses the synthesis of 3-hydroxykynurenine from L-kynurenine, a key step in the kynurenine pathway (KP) of tryptophan degradation. Perturbation of KP metabolism due to inflammation has long been associated with the pathogenesis of several neurodegenerative disorders, including Huntington's disease (HD)-which is caused by the expansion of a polyglutamine stretch in the huntingtin (HTT) protein. While HTT is primarily localised to the cytoplasm, it also associates with mitochondria, where it may physically interact with KMO. In order to test this hypothesis, we employed bimolecular fluorescence complementation (BiFC) and found that KMO physically interacts with soluble HTT exon 1 protein fragment in living cells. Notably, expansion of the disease-causing polyglutamine tract in HTT leads to the formation of proteinaceous intracellular inclusions that disrupt this interaction with KMO, markedly decreasing BiFC efficiency. Using confocal microscopy and ultrastructural analysis, we determined KMO and HTT localisation within the cell and found that the KMO-HTT interaction is localized to the outer mitochondrial membrane. These data suggest that KMO may interact with a pool of HTT at the mitochondrial membrane, highlighting a possible physiological role for mitochondrial HTT. The KMO-HTT interaction is abrogated upon polyglutamine expansion, which may indicate a heretofore unrecognized relevance in the pathogenesis of this disorder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496550 | PMC |
http://dx.doi.org/10.3390/biomedicines10092294 | DOI Listing |