Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Protein export and host membrane remodeling are crucial for multiple Plasmodium species to establish a niche in infected hosts. To better understand the contribution of these processes to successful parasite infection in vivo, we sought to find and characterize protein components of the intraerythrocytic Plasmodium berghei-induced membrane structures (IBIS) that form in the cytoplasm of infected erythrocytes. We identified proteins that immunoprecipitate with IBIS1, a signature member of the IBIS in P. berghei-infected erythrocytes. In parallel, we also report our data describing proteins that co-precipitate with the PTEX (Plasmodium translocon of exported proteins) component EXP2. To validate our findings, we examined the location of three candidate IBIS1-interactors that are conserved across multiple Plasmodium species, and we found they localized to IBIS in infected red blood cells and two further colocalized with IBIS1 in the liver-stage parasitophorous vacuole membrane. Successful gene deletion revealed that these two tryptophan-rich domain-containing proteins, termed here IPIS2 and IPIS3 (for intraerythrocytic Plasmodium-induced membrane structures), are required for efficient blood-stage growth. Erythrocytes infected with IPIS2-deficient schizonts in particular fail to bind CD36 as efficiently as wild-type P. berghei-infected cells and therefore fail to effectively sequester out of the circulating blood. Our findings support the idea that intra-erythrocytic membrane compartments are required across species for alterations of the host erythrocyte that facilitate interactions of infected cells with host tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9524624PMC
http://dx.doi.org/10.1371/journal.ppat.1010846DOI Listing

Publication Analysis

Top Keywords

required efficient
8
multiple plasmodium
8
plasmodium species
8
membrane structures
8
plasmodium
5
membrane
5
infected
5
member tryptophan-rich
4
tryptophan-rich protein
4
protein family
4

Similar Publications

Stroke significantly contributes to long-term disability, one of the problems is with impaired balance control, increasing the risk of falls. The risk of falls may be mitigated using reactive balance training (RBT) which has been shown to effectively reduce fall risk by enhancing reactive stepping following repeated balance perturbations. However, the optimal RBT intensity for people with chronic stroke remains unknown.

View Article and Find Full Text PDF

Tracking the translocation of fluorescent-based reporters at the single-cell level in living mouse embryos requires specialized expertise in mouse embryology and deep computational skills. Here, we detail an approach to quantify cyclin-dependent kinase (CDK) activity levels in single cells throughout different stages of the pre-implantation embryo. We discuss in vitro culture strategies that enable efficient live fluorescent confocal image acquisition and subsequent cell tracking.

View Article and Find Full Text PDF

Summary: Dynamic models represent a powerful tool for studying complex biological processes, ranging from cell signalling to cell differentiation. Building such models often requires computationally demanding modelling workflows, such as model exploration and parameter estimation. We developed two Julia-based tools: SBMLImporter.

View Article and Find Full Text PDF

To combine the strengths of Gaussian and non-Gaussian latent variable models, a novel information fusion strategy has recently been proposed under the deep learning framework. Although promising results have been obtained, the critical structure learning problem remains unsolved, which seriously hinders the automation of data-driven modeling and analytics. In this article, the maximal information coefficient (MIC) method is introduced as a measurement of the AS between two latent variables, which has no restriction in the type of data distribution.

View Article and Find Full Text PDF

Marine-derived enzymes often show distinct physiological properties and great potential for industrial use. Salt ions may improve the stability and expression efficiency of marine enzymes, which requires salt-resistant host based expression platform. Aspergillus oryzae of good protein expression and secretion was evaluated and explored for this purpose.

View Article and Find Full Text PDF