Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Mercury behavior upon resuspension of sediments from two impacted areas of Guanabara Bay was evaluated to assess worst-case methylmercury (MeHg) responses, under dark experimental conditions to prevent demethylation by photolysis. Study areas include the Rio de Janeiro Harbor (RJH) and the chlor-alkali plant-affected Meriti River (MR) estuary. Total mercury (THg) and MeHg concentrations were determined along 24-h experiments of sediment resuspension in the bay water in dark conditions. Fine-grained Meriti River (MR) estuary sediments had 8 times higher MeHg initial concentrations than sandy Rio de Janeiro Harbor (RJH) sediments (3.4 ± 0.29 vs. 0.41 ± 0.1 ng g, respectively). Though THg contents were uncorrelated with resuspension time, statistically significant correlations of MeHg (r = 0.78) and %MeHg in relation to THg (r = 0.86) with resuspension time were observed for RJH sediments, indicating net methylation only for this study site. These positive correlation trends correspond to a 2.8 times MeHg concentration increase (ΔMeHg = 0.75 ng g) and 4.4 times increase in %MeHg (Δ%MeHg = 1.0%), after 24 h of resuspension. This suggests that assessments of factors affecting the MeHg spatial-temporal variability and associated toxicity risks can be limited in some sites if concentration changes due to sediment resuspension-redeposition processes are not considered. Therefore, the inclusion of MeHg evaluation before and after sediment resuspension events is recommendable for the improvement of dredging licensing and monitoring activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-022-10485-y | DOI Listing |