A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fluid flow at interfaces driven by thermal gradients. | LitMetric

Fluid flow at interfaces driven by thermal gradients.

Phys Rev E

Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100 Como, Italy.

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thermal forces drive several nonequilibrium phenomena able to set a fluid in motion without pressure gradients. Although the most celebrated effect is thermophoresis, also known as Ludwig-Soret effect, probably the simplest example where thermal forces are at play is thermo-osmosis: The motion of a confined fluid exclusively due to the presence of a temperature gradient. We present a concise but complete derivation of the microscopic theory of thermo-osmosis based on linear response theory. This approach is applied to a simple fluid confined in a slab geometry, mimicking the flow through a pore in a membrane separating two fluid reservoirs at different temperatures. We consider both the case of an open channel, where the fluid can flow freely, and that of a closed channel, where mass transport is inhibited and a pressure drop sets in at the boundaries. Quantitative results require the evaluation of generalized transport coefficients, but a preliminary check on a specific prediction of the theory has been successfully performed via nonequilibrium molecular dynamics simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.024116DOI Listing

Publication Analysis

Top Keywords

fluid flow
8
thermal forces
8
fluid
6
flow interfaces
4
interfaces driven
4
driven thermal
4
thermal gradients
4
gradients thermal
4
forces drive
4
drive nonequilibrium
4

Similar Publications