A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Systematic study of the iodinated rectal hydrogel spacer material discrepancy on accuracy of proton dosimetry. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Iodination of rectal hydrogel spacer increases the computed tomography (CT) visibility. The effect of iodinated hydrogel spacer material on the accuracy of proton dosimetry has not been fully studied yet. We presented a systematic study to determine the effect of iodination on proton dosimetry accuracy during proton therapy (PT).

Methods: PT plans were designed for 20 prostate cancer patients with rectal hydrogel spacer. Three variations of hydrogel density were considered. First, as the ground truth, the true elemental composition of hydrogel true material (TM), verified by our measurement of spacer stopping power ratio, was used for plan optimization and Monte Carlo dose calculation. The dose distribution was recalculated with (1) no material (NM) override based on the CT intensity of the iodinated spacer, and (2) the water material (WM) override, where spacer material was replaced by water. The plans were compared with the ground truth using the metrics of gamma index (GI) and dosimetric indices.

Results: The iodination of hydrogel spacer affected the proton dose distribution with the NM scenario showing the most deviation from the ground truth. The iodination of spacer resulted in a notable increase in CT intensity and led to the treatment planning systems mistreating the iodinated spacer as a high-density material. Among the structures adjacent to the target, neurovascular bundles showed the largest dose difference, up to 350 cGy or about 5% of the prescribed dose with NM. Compared to the WM scenario, dose distribution similarity and GI passing ratios were lower in the NM scenario.

Conclusion: The inaccurate CT intensity-based material for iodinated spacer resulted in errors in PT dose calculation. We found that the error was negligible if the iodinated spacer was replaced with water. Water density can be used as a clinically accessible and convenient alternative material override to true spacer material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588264PMC
http://dx.doi.org/10.1002/acm2.13774DOI Listing

Publication Analysis

Top Keywords

hydrogel spacer
20
spacer material
16
iodinated spacer
16
spacer
13
rectal hydrogel
12
accuracy proton
12
proton dosimetry
12
ground truth
12
dose distribution
12
material override
12

Similar Publications