A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Manipulating spatial alignment of donor and acceptor in host-guest MOF for TADF. | LitMetric

Manipulating spatial alignment of donor and acceptor in host-guest MOF for TADF.

Natl Sci Rev

School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Thermally activated delayed fluorescence (TADF) was achieved when electron-rich triphenylene (Tpl) donors were confined to a cage-based porous metal-organic framework (MOF) host (NKU-111) composed of electron-deficient 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine (Tpt) acceptor as the ligand. The spatially separated donor and acceptor molecules in a face-to-face stacking pattern generated strong through-space charge transfer (CT) interactions with a small energy splitting between the singlet and triplet excited states (∼0.1 eV), which enabled TADF. The resulting Tpl@NKU-111 exhibited an uncommon enhanced emission intensity as the temperature increased. Extensive steady-state and time-resolved spectroscopic measurements and first-principles simulations revealed the chemical and electronic structure of this compound in both the ground and low-lying excited states. A double-channel (T, T) intersystem crossing mechanism with S was found and explained as single-directional CT from the degenerate HOMO-1/HOMO of the guest donor to the LUMO+1 of one of the nearest acceptors. The rigid skeleton of the compound and effective through-space CT enhanced the photoluminescence quantum yield (PLQY). A maximum PLQY of 57.36% was achieved by optimizing the Tpl loading ratio in the host framework. These results indicate the potential of the MOFs for the targeted construction and optimization of TADF materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9466880PMC
http://dx.doi.org/10.1093/nsr/nwab222DOI Listing

Publication Analysis

Top Keywords

donor acceptor
8
excited states
8
manipulating spatial
4
spatial alignment
4
alignment donor
4
acceptor host-guest
4
host-guest mof
4
tadf
4
mof tadf
4
tadf thermally
4

Similar Publications