Perfuse and Reuse: A Low-Cost Three-Dimensional-Printed Perfusion Bioreactor for Tissue Engineering.

Tissue Eng Part C Methods

Laboratory of Bioregenerative Medicine and Surgery, Division of Plastic Surgery, Weill Cornell Medical College, New York, New York, USA.

Published: November 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article describes fabrication of a customizable bioreactor, which comprises a perfusion system and coverslip-based tissue culture chamber that allow centimeter-scale vascularized or otherwise canalized tissue constructs to be maintained in weeks long static and/or perfusion culture at an exceptionally low cost, with intermittent live imaging and media sampling capabilities. The perfusion system includes a reusable polydimethylsiloxane (PDMS) lid generated from a three-dimensional (3D)-printed poly-lactic acid (PLA) mold and several lengths of perfusion tubing. The coverslip tissue culture chamber includes PDMS components built with 3D-printed PLA molds, as well as 3D-printed PLA frames and glass coverslips that house perfusable hydrogel constructs. As proof of concept, we fabricated a vascularized hydrogel construct, which was subjected to static and perfusion tissue culture, as well as flow studies using fluorescent beads and widefield fluorescent microscopy. This system can be readily reproduced, promoting the advancement of tissue engineering and regenerative medicine research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805868PMC
http://dx.doi.org/10.1089/ten.TEC.2022.0139DOI Listing

Publication Analysis

Top Keywords

tissue culture
12
tissue engineering
8
perfusion system
8
culture chamber
8
3d-printed pla
8
perfusion
6
tissue
6
perfuse reuse
4
reuse low-cost
4
low-cost three-dimensional-printed
4

Similar Publications

Angiotensin II (Ang II) releases inflammatory mediators from several cell types. The objective of this study was to investigate the potential of Ang II to induce mRNA expression of inflammatory mediators in primary cultured fibroblast-like cells isolated from gingival and periodontal ligament tissues. A synergistic effect of co-treatment with Ang II and Interleukin-1β (IL1β) on the mRNA expression of inflammatory mediators was explored.

View Article and Find Full Text PDF

Understanding how cells control their biophysical properties during development remains a fundamental challenge. While macromolecular crowding affects multiple cellular processes in single cells, its regulation in living animals remains poorly understood. Using genetically encoded multimeric nanoparticles for in vivo rheology, we found that tissues maintain mesoscale properties that differ from those observed across diverse systems, including bacteria, yeast species, and cultured mammalian cells.

View Article and Find Full Text PDF

Human myelinated brain organoids with integrated microglia as a model for myelin repair and remyelinating therapies.

Sci Transl Med

September 2025

Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland.

Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are essential for the formation of myelin sheaths and pivotal for maintaining axonal integrity and conduction. Disruption of these cells and the myelin sheaths they produce is a hallmark of demyelinating conditions like multiple sclerosis or those resulting from certain drug side effects, leading to profound neurological impairments. In this study, we created a human brain organoid comprising neurons, astrocytes, and myelinating oligodendrocytes.

View Article and Find Full Text PDF

Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.

View Article and Find Full Text PDF

Objectives: This study aimed to compare the efficacy of the full-thickness palatal graft technique (FTPGT) and the coronally advanced flap with subepithelial connective tissue graft (CAF + SCTG) in achieving complete root coverage (CRC) in single gingival recessions (GR).

Methods: Forty healthy patients with a single RT1 GR were randomized into two groups: 20 treated with CAF + SCTG and 20 with FTPGT. Baseline and 12-month measurements of GR, keratinized tissue width (KTW), probing depth (PD), clinical attachment level (CAL), and gingival thickness (GT) were recorded.

View Article and Find Full Text PDF