Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The rapid mutations on hemagglutinin (HA) of influenza A virus (IAV) can lead to significant antigenic variance and consequent immune mismatch of vaccine strains. Thus, rapid antigenicity evaluation is highly desired. The subtype-specific antigenicity models have been widely used for common subtypes such as H1 and H3. However, the continuous emerging of new IAV subtypes requires the construction of universal antigenic prediction model which could be applied on multiple IAV subtypes, including the emerging or re-emerging ones. In this study, we presented Univ-Flu, series structure-based universal models for HA antigenicity prediction. Initially, the universal antigenic regions were derived on multiple subtypes. Then, a radial shell structure combined with amino acid indexes were introduced to generate the new three-dimensional structure based descriptors, which could characterize the comprehensive physical-chemical property changes between two HA variants within or across different subtypes. Further, by combining with Random Forest classifier and different training datasets, Univ-Flu could achieve high prediction performances on intra-subtype (average AUC of 0.939), inter-subtype (average AUC of 0.771), and universal-subtype (AUC of 0.978) prediction, through independent test. Results illustrated that the designed descriptor could provide accurate universal antigenic description. Finally, the application on high-throughput antigenic coverage prediction for circulating strains showed that the Univ-Flu could screen out virus strains with high cross-protective spectrum, which could provide reference for vaccine recommendation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436755 | PMC |
http://dx.doi.org/10.1016/j.csbj.2022.08.052 | DOI Listing |