A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Measuring spatio-temporal heterogeneity and interior characteristics of green spaces in urban neighborhoods: A new approach using gray level co-occurrence matrix. | LitMetric

Measuring spatio-temporal heterogeneity and interior characteristics of green spaces in urban neighborhoods: A new approach using gray level co-occurrence matrix.

Sci Total Environ

Humboldt Universität zu Berlin, Department of Geography, Lab for Landscape Ecology, Rudower Chaussee 16, 12489 Berlin, Germany; Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, D-04318 Leipzig, Germany.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Urban green space (UGS) is a complex and highly dynamic interface between people and nature. The existing methods of quantifying and evaluating UGS are mainly implemented on the surface features at a landscape scale, and most of them are insufficient to thoroughly reflect the spatial-temporal relationships, especially the internal characteristics changes at a small scale and the neighborhood spatial relationship of UGS. This paper thus proposes a method to evaluate the internal dynamics and neighborhood heterogeneity of different types of UGS in Leipzig using the gray level co-occurrence matrix (GLCM) index. We choose GLCM variance, contrast, and entropy to analyze five main types of UGS through a holistic description of their vegetation growth, spatial heterogeneity, and internal orderliness. The results show that different types of UGS have distinct characteristics due to the changes of surrounding buildings and the distance to the built-up area. Within a one-year period, seasonal changes in UGS far away from built-up areas are more obvious. As for the larger and dense urban forests, they have the lowest spatial heterogeneity and internal order. On the contrary, the garden areas present the highest heterogeneity. In this study, the GLCM index depicts the seasonal alternation of UGS on the temporal scale and shows the spatial form of each UGS, being in line with local urban planning contexts. The correlation analysis of indices also proves that each type of UGS has its distinct temporal and spatial characteristics. The GLCM is valid in assessing the internal characteristics and relationships of various UGS at the neighborhood scales, and using the methodology developed in our study, more studies and field experiments could be fulfilled to investigate the assessment accuracy of our GLCM index approach and to further enhance the scientific understanding on the internal features and ecological functions of UGS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158608DOI Listing

Publication Analysis

Top Keywords

ugs
12
types ugs
12
gray level
8
level co-occurrence
8
co-occurrence matrix
8
internal characteristics
8
characteristics changes
8
spatial heterogeneity
8
heterogeneity internal
8
ugs distinct
8

Similar Publications