A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Influence of inputs for bone lesion segmentation in longitudinal F-FDG PET/CT imaging studies. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In metastatic breast cancer, bone metastases are prevalent and associated with multiple complications. Assessing their response to treatment is therefore crucial. Most deep learning methods segment or detect lesions on a single acquisition while only a few focus on longitudinal studies. In this work, 45 patients with baseline (BL) and follow-up (FU) images recruited in the context of the EPICURE study were analyzed. The aim was to determine if a network trained for a particular timepoint can generalize well to another one, and to explore different improvement strategies. Four networks based on the same 3D U-Net framework to segment bone lesions on BL and FU images were trained with different strategies and compared. These four networks were trained 1) only with BL images 2) only with FU images 3) with both BL and FU images 4) only with FU images but with BL images and bone lesion segmentations registered as input channels. With the obtained segmentations, we computed the PET Bone Index (PBI) which assesses the bone metastases burden of patients and we analyzed its potential for treatment response evaluation. Dice scores of 0.53, 0.55, 0.59 and 0.62 were respectively obtained on FU acquisitions. The under-performance of the first and third networks may be explained by the lower SUV uptake due to treatment response in FU images compared to BL images. The fourth network gives better results than the second network showing that the addition of BL PET images and bone lesion segmentations as prior knowledge has its importance. With an AUC of 0.86, the difference of PBI between two acquisitions could be used to assess treatment response. Clinical relevance- To assess the response to treatment of bone metastases, it is crucial to detect and segment them on several acquisitions from a same patient. We proposed a completely automatic method to detect and segment these metastases on longitudinal 18F-FDG PET/CT images in the context of metastatic breast cancer. We also proposed an automatic PBI to quantitatively assess the evolution of the bone metastases burden of patient and to automatically evaluate their response to treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC48229.2022.9871081DOI Listing

Publication Analysis

Top Keywords

bone metastases
16
images images
16
bone lesion
12
response treatment
12
treatment response
12
images
11
bone
9
metastatic breast
8
breast cancer
8
images bone
8

Similar Publications