Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This project assessed the use of multivariate auto-regressive (MAR) models to create forecasts of continuous vital signs in hospitalized patients. A total of 20 hours continuous (1/60Hz) heart rate and respiration rate from eight postoperative patients, where used to fit a centered MAR model for forecasting in windows of 15 minutes. The model was fitted using Markov Chain Monte Carlo sampling, and the model was evaluated on data from five additional patients. The results demonstrate an average RMSE in the forecast window of 11.4 (SD: 7.30) beats per minute for heart rate and 3.3 (SD:1.3) breaths per minute for respiration rate. These results indicate potential for forecasting vital signs in a clinical setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC48229.2022.9871010 | DOI Listing |