Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Blood pressure (BP) is a key parameter in critical care and in cardiovascular disease management. BP is typically measured via cuff-based oscillometry. This method is highly inaccurate in hypo- and hypertensive patients. Improvements are difficult to achieve because oscillometry is not yet fully understood; many assumptions and uncertainties exist in models describing the process by which arterial pulsations become expressed within the cuff signal. As a result, it is also difficult to estimate other parameters via the cuff such as arterial stiffness, cardiac output and pulse wave velocity (PWV)-BP calibration. Many research modalities have been employed to study oscillometry (ultrasound, computer simulations, ex-vivo studies, measurement of PWV, mechanical analysis). However, uncertainties remain; additional investigation modalities are needed. In this study, we explore the extent to which MRI can help investigate oscillometric assumptions. Four healthy volunteers underwent a number of MRI scans of the upper arm during cuff inflation. It is found that MRI provides a novel perspective over oscillometry; the artery, surrounding tissue, veins and the cuff can be simultaneously observed along the entire length of the upper arm. Several existing assumptions are challenged: tissue compression is not isotropic, arterial transmural pressure is not uniform along the length of the cuff and propagation of arterial pulsations through tissue is likely impacted by patient-specific characteristics (vasculature position and tissue composition). Clinical Relevance- The cuff interaction with the vasculature is extremely complex; existing models are oversimplified. MRI is a valuable tool for further development of cuff-based physiological measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC48229.2022.9871137 | DOI Listing |