98%
921
2 minutes
20
Mediterranean forests and fire regimes are closely intertwined. Global change is likely to alter both forest dynamics and wildfire activity, ultimately threatening the provision of ecosystem services and posing greater risks to society. In this paper we evaluate future wildfire behavior by coupling climate projections with simulation models of forest dynamics and wildfire hazard. To do so, we explore different forest management scenarios reflecting different narratives related to EU forestry (promotion of carbon stocks, reduction of water vulnerability, biomass production and business-as-usual) under the RCP 4.5 and RCP 8.5 climate pathways in the period 2020-2100. We used as a study model pure submediterranean Pinus nigra forests of central Catalonia (NE Spain). Forest dynamics were simulated from the 3rd National Forest Inventory (143 stands) using SORTIE-nd software based on climate projections under RCPs 4.5 and 8.5. The climate products were also used to estimate fuel moisture conditions (both live and dead) and wind speed. Fuel parameters and fire behavior were then simulated, selecting crown fire initiation potential and rate of spread as key indicators. The results revealed consistent trade-offs between forest dynamics, climate and wildfire. Despite the clear influence exerted by climate, forest management modulates fire behavior, resulting in different trends depending on the climatic pathway. In general, the maintenance of current practices would result in the highest rates of crown fire activity, while management for water vulnerability reduction is postulated as the best alternative to surmount the increasingly hazardous conditions envisaged in RCP 8.5.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.116134 | DOI Listing |
Front Mol Biosci
August 2025
Department of Environmental Science, University of Arizona, Tucson, AZ, United States.
Introduction: Peatlands store up to a third of global soil carbon, and in high latitudes their litter inputs are increasing and changing in composition under climate change. Although litter significantly influences peatland carbon and nutrient dynamics by changing the overall lability of peatland organic matter, the physicochemical mechanisms of this impact-and thus its full scope-remain poorly understood.
Methods: We applied multimodal metabolomics (UPLC-HRMS, H NMR) paired with C Stable Isotope-Assisted Metabolomics (SIAM) to track litter carbon and its potential priming effects on both existing soil organic matter and carbon gas emissions.
Front Pharmacol
August 2025
School of Health Management, Zhejiang Pharmaceutical University, Ningbo, China.
Background: Acute and long-term mental health disorders correlate with coronavirus disease 2019 (COVID-19). The underlying mechanisms responsible for the coexistence of COVID-19 and depression remain unclear, and more research is needed to find hub genes and effective therapies. The main objective of this study was to evaluate gene-expression profiles and, identify key genes, and discovery potential therapeutic agents for co-occurrence in COVID-19 and major depressive disorder (MDD).
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forest University, Hangzhou 311300, China. Electronic address:
Tobacco brown spot disease (TBSD), is a severe leaf disease caused by Alternaria alternata, and its management heavily relies on dicarboximide fungicides. This study analyzed procymidone, a dicarboximide fungicide, resistance in 96 strains of A. alternata isolated from tobacco in Guizhou Province.
View Article and Find Full Text PDFFungal Biol
October 2025
School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China. Electronic address:
Urban green areas are vital yet underexplored reservoirs of microbial diversity in cities. This study examines myxomycete communities in Zijin Mountain National Forest Park, a subtropical urban forest in Nanjing, China, across four seasons and multiple forest types. Combining field collections and moist chamber cultures, we documented 60 species from 906 occurrence records.
View Article and Find Full Text PDFJ Contam Hydrol
September 2025
School of Marine Sciences, Sun Yat-sen University, 135 Xin'gang RD.W., Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China. Electronic address:
We systematically investigated DNEs throughout imbibition processes, specifically evaluating: (1) the temporal correspondence between DNE development and changes in water saturation/capillary pressure, and (2) the dominant factors governing DNE magnitude during imbibition. The signal drift during extended testing, and the gravitational effect on both the capillary pressure and water saturation were eliminated. The results indicate that, when water saturation was below a threshold value (∼0.
View Article and Find Full Text PDF