A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Dual role of oxygen-related defects in the luminescence kinetics of AlN:Mn. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study presents the impact of temperature and pressure on AlN:Mn luminescence kinetics. Unusual behavior of Mn optical properties during UV excitation is observed, where a strong afterglow luminescence of Mn occurs even at low temperatures. When the temperature increases, the contribution of the afterglow luminescence is further enhanced, causing a significant increase in the luminescence intensity. The observed phenomena may be explained by an energy diagram in which the O-V complex in AlN:Mn plays a key role. Hence the O-V complex defect in AlN:Mn plays a double role. When the O-V defect is located close to Mn ions, it is responsible for transferring excitation energy directly to Mn ions. However, when the O-V defect complex is located far from Mn ions, its excited state level acts as an electron trap responsible for afterglow luminescence. Additionally, three models have been tested to explain the structure of the emission spectrum and the strong asymmetry between the excitation and emission spectra. From the most straightforward configuration coordinate diagram through the configuration coordinate diagram model assuming different elastic constants in the excited and ground-states ending by a model based on the Jahn-Teller effect. We proved that only the Jahn-Teller effect in the excited T electronic state with spin-orbit coupling could fully explain the observed phenomena. Finally, high-pressure spectroscopic results complemented by the calculations of Racah parameters and the Tanabe-Sugano diagram are presented.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt02171dDOI Listing

Publication Analysis

Top Keywords

afterglow luminescence
12
luminescence kinetics
8
observed phenomena
8
o-v complex
8
alnmn plays
8
role o-v
8
o-v defect
8
configuration coordinate
8
coordinate diagram
8
luminescence
6

Similar Publications