Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Movement health is understanding our body's ability to perform movements during activities of daily living such as lifting, reaching, and bending. The benefits of improved movement health have long been recognized and are wide-ranging from improving athletic performance to helping ease of performing simple tasks, but only recently has this concept been put into practice by clinicians and quantitatively studied by researchers. With digital health and movement monitoring becoming more ubiquitous in society, smartphone applications represent a promising avenue for quantifying, monitoring, and improving the movement health of an individual. In this paper, we validate Halo Movement, a movement health assessment which utilizes the front-facing camera of a smartphone and applies computer vision and machine learning algorithms to quantify movement health and its sub-criteria of mobility, stability, and posture through a sequence of five exercises/activities. On a diverse cohort of 150 participants of various ages, body types, and ability levels, we find moderate to strong statistically significant correlations between the Halo Movement assessment overall score, metrics from sensor-based 3D motion capture, and scores from a sequence of 13 standardized functional movement tests. Further, the smartphone assessment is able to differentiate regular healthy individuals from professional movement athletes (e.g., dancers, cheerleaders) and from movement impaired participants, with higher resolution than that of existing functional movement screening tools and thus may be more appropriate than the existing tests for quantifying functional movement in able-bodied individuals. These results support using Halo Movement's overall score as a valid assessment of movement health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9445016 | PMC |
http://dx.doi.org/10.1038/s41746-022-00684-9 | DOI Listing |