Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Recent advances in metasurfaces and optical nanostructures have enabled complex control of incident light with optically thin devices. However, it has thus far been unclear whether it is possible to achieve complete linear control of coherent light transmission, that is, independent control of polarization, amplitude, and phase for both input polarization states, with just a single, thin nanostructure array. Here, it is proved possible, and a universal metasurface is proposed, a bilayer array of high-index elliptic cylinders that possesses a complete degree of optical freedom with fully designable chirality and anisotropy. The completeness of achievable light control is mathematically shown with corresponding Jones matrices, new types of 3D holographic schemes that were formerly impossible are experimentally demonstrated, and a systematic way of realizing any input-state-sensitive vector linear optical device is presented. The results unlock previously inaccessible degrees of freedom in light transmission control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202204085 | DOI Listing |