Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background And Objectives: Substance use disorders (SUDs) are chronic relapsing diseases characterized by significant morbidity and mortality. Phenomenologically, patients with SUDs present with a repeating cycle of intoxication, withdrawal, and craving, significantly impacting their diagnosis and treatment. There is a need for better identification and monitoring of these disease states. Remote monitoring chronic illness with wearable devices offers a passive, unobtrusive, constant physiological data assessment. We evaluate the current evidence base for remote monitoring of nonalcohol, nonnicotine SUDs.
Methods: We performed a systematic, comprehensive literature review and screened 1942 papers.
Results: We found 15 studies that focused mainly on the intoxication stage of SUD. These studies used wearable sensors measuring several physiological parameters (ECG, HR, O , Accelerometer, EDA, temperature) and implemented study-specific algorithms to evaluate the data.
Discussion And Conclusions: Studies were extracted, organized, and analyzed based on the three SUD disease states. The sample sizes were relatively small, focused primarily on the intoxication stage, had low monitoring compliance, and required significant computational power preventing "real-time" results. Cardiovascular data was the most consistently valuable data in the predictive algorithms. This review demonstrates that there is currently insufficient evidence to support remote monitoring of SUDs through wearable devices.
Scientific Significance: This is the first systematic review to show the available data on wearable remote monitoring of SUD symptoms in each stage of the disease cycle. This clinically relevant approach demonstrates what we know and do not know about the remote monitoring of SUDs within disease states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ajad.13341 | DOI Listing |