Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The finite-time synchronization issue of reaction-diffusion memristive neural networks (RDMNNs) is studied in this paper. To better synchronize the parameter-varying drive and response systems, an innovative gain-scheduled integral sliding mode control scheme is proposed, where the 2 controller gains can be scheduled and an integral switching surface function that contains a discontinuous term is involved. Moreover, by constructing a novel Lyapunov-Krasovskii functional and combining reciprocally convex combination (RCC) method, a less conservative finite-time synchronization criterion for RDMNNs is derived in the form of linear matrix inequalities (LMIs). Finally, three numerical simulations are exploited to illustrate the effectiveness, superiority and practicability of this paper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.isatra.2022.08.011 | DOI Listing |