Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Breast cancer remains the most prevalent malignancy in women in many countries around the world, thus calling for better imaging technologies to improve screening and diagnosis. Grating interferometry (GI)-based phase contrast X-ray CT is a promising technique which could make the transition to clinical practice and improve breast cancer diagnosis by combining the high three-dimensional resolution of conventional CT with higher soft-tissue contrast. Unfortunately though, obtaining high-quality images is challenging. Grating fabrication defects and photon starvation lead to high noise amplitudes in the measured data. Moreover, the highly ill-conditioned differential nature of the GI-CT forward operator renders the inversion from corrupted data even more cumbersome. In this paper, we propose a novel regularized iterative reconstruction algorithm with an improved tomographic operator and a powerful data-driven regularizer to tackle this challenging inverse problem. Our algorithm combines the L-BFGS optimization scheme with a data-driven prior parameterized by a deep neural network. Importantly, we propose a novel regularization strategy to ensure that the trained network is non-expansive, which is critical for the convergence and stability analysis we provide. We empirically show that the proposed method achieves high quality images, both on simulated data as well as on real measurements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436132PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0272963PLOS

Publication Analysis

Top Keywords

phase contrast
8
tomographic operator
8
data-driven prior
8
breast cancer
8
propose novel
8
iterative phase
4
contrast reconstruction
4
reconstruction novel
4
novel tomographic
4
operator data-driven
4

Similar Publications

Controlling the Regioselectivity of Topochemical Reduction Reactions Through Sequential Anion Insertion and Extraction.

Angew Chem Int Ed Engl

September 2025

Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.

Topochemical reduction of the n = 2 Ruddlesden-Popper oxide, LaSrCoRuO, yields LaSrCoRuO, a phase containing (Co/Ru)O squares which share corners to form 1D infinite double-chains. In contrast, fluorination of LaSrCoRuO yields the oxyfluoride LaSrCoRuOF, which can then be reduced to form LaSrCoRuOF. This reduced oxyfluoride is almost isoelectronic with LaSrCoRuO, but LaSrCoRuOF has a crystal structure in which the (Co/Ru)O squares are connected into 2D infinite sheets.

View Article and Find Full Text PDF

Fetal 4D Flow CMR for Advanced Diagnostics of Congenital Heart Disease: A Prospective Cohort Study.

Eur Heart J Cardiovasc Imaging

September 2025

Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.

Aims: Fetal circulation undergoes complex changes in congenital heart disease (CHD) that are challenging to assess with fetal echocardiography. This study aimed to assess clinical feasibility and diagnostic value of 4D flow cardiac magnetic resonance (CMR) in fetal CHD.

Methods And Results: Pregnant women in advanced third trimester pregnancy with fetal CHD were prospectively recruited for fetal CMR between 08/2021 and 11/2024.

View Article and Find Full Text PDF

In ultrasound imaging, propagation of an acoustic wavefront through heterogeneous media causes phase aberrations that degrade the coherence of the reflected wavefront, leading to reduced image resolution and contrast. Adaptive imaging techniques attempt to correct this phase aberration and restore coherence, leading to improved focusing of the image. We propose an autofocusing paradigm for aberration correction in ultrasound imaging by fitting an acoustic velocity field to pressure measurements, via optimization of the common midpoint phase error (CMPE), using a straight-ray wave propagation model for beamforming in diffusely scattering media.

View Article and Find Full Text PDF

Diagnostic tips for multi-phase post-mortem computed tomography angiography interpretation in upper gastro-intestinal bleeding.

Int J Legal Med

September 2025

University Center of Legal Medicine Lausanne-Geneva, University of Geneva, Geneva University Hospitals, Rue Michel-Servet 1, 1211, Geneva 4, Switzerland.

In the past 10 years, the Multi-phase Post-mortem Computed Tomography Angiography (MPMCTA) has considerably improved the quality and precision of postmortem diagnoses, particularly in cases with vascular implication. MPMCTA is known to have higher sensitivity for detecting the source of a hemorrhage than autopsy. Death by upper gastro-intestinal (GI) bleeding is not so uncommon in forensic practice.

View Article and Find Full Text PDF

The rate of sudden unexpected death in epilepsy (SUDEP) is ~1 per 1000 patients each year. Terminal events reportedly involve repeated and prolonged apnea, suggesting a failure to autoresuscitate. To better understand the mechanisms and identify novel therapeutics, standardized tests to screen for autoresuscitation efficacy are needed in preclinical SUDEP.

View Article and Find Full Text PDF